

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Instrumentation Engineering

Course Code: 19EI6PE3MC

Course: Modern Control Theory

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Enumerate the different types of common physical non-linearities and explain any two.	CO1	PO4	10
		b)	Obtain the describing function of saturation non-linearity.	CO1	PO1	10
			UNIT-II			
	2	a)	Determine the Canonical State Model of the System, whose transfer function in $T(S) = 2(S+5) / (S+2)(S+3)(S+4)$	CO2	PO2 PO5 PO9 PO10	10
		b)	Consider the Matrix A. Compute e^{At} $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$	CO2	PO2 PO5 PO9 PO10	10
			OR			
	3	a)	For a System represented by state equation. $\dot{X}(t) = AX(t)$ The response in $x(t) = \begin{bmatrix} e^{-2t} \\ -2e^{-2t} \end{bmatrix}$ when $x(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $x(t) = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix}$ when $x(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ Determine the System Matrix A and the State Transition Matrix	CO2	PO2 PO5 PO9 PO10	12

	b)	<p>The State diagram of a linear system is as shown in Fig 3(b). Assign state variables and obtain state model.</p> <p>Fig 3(b)</p>	CO2 PO2 PO5 PO9 PO10	08
		UNIT - III		
4	a)	Describe the block diagram of a digital control system and explain each block in detail.	CO1 PO1	06
	b)	Elaborate Jury's stability test to determine system stability test and write the necessary and sufficient conditions	CO2 PO2 PO5 PO9 PO10	07
	c)	Evaluate the observability of the system whose state space matrix is given as follows.	CO4 PO2	07
		$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & -3 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad C = [3 \quad 4 \quad 1]$		
		OR		
5	a)	Explain Linear Discrete systems and obtain pulse transfer function of the same in z-domain.	CO3 PO3	07
	b)	The characteristic equation for a closed loop discrete time system is given by the following expression. Determine its stability using jury's stability test	CO3 PO3	06
		$Q(z) = z^3 - 1.8z^2 + 1.05z - 0.20 = 0$		
	c)	Estimate the state controllability by Gilberts test for the system with state matrix is as follows.	CO4 PO2	07
		$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$		
		UNIT - IV		
6	a)	What is lead compensator? Give an example	CO5 PO4	05
	b)	Design a feedback compensation scheme using bode plot technique for a unity feedback system with open loop transfer function $G(S) = 3/S(S+1)$ to satisfy the phase margin of system to be at least 45^0 .	CO5 PO4	15

UNIT - V					
7	a)	Explain the procedure for designing a lead compensator using the root locus method. Mention advantages of lead compensator.	<i>CO5</i>	<i>PO4</i>	10
	b)	The closed loop transfer function of a system is given by $\frac{C(s)}{R(s)} = \frac{4}{s^2 + 2s + 4}$. The damping ratio of the closed loop poles is 0.5 and the undamped natural frequency of the closed loop poles is 2 rad/s, design a lead compensator to modify the undamped natural frequency to 4 rad/s without changing the value of damping ratio.	<i>CO5</i>	<i>PO4</i>	10

B.M.S.C.E. - EVEN SEM 2022-23