

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

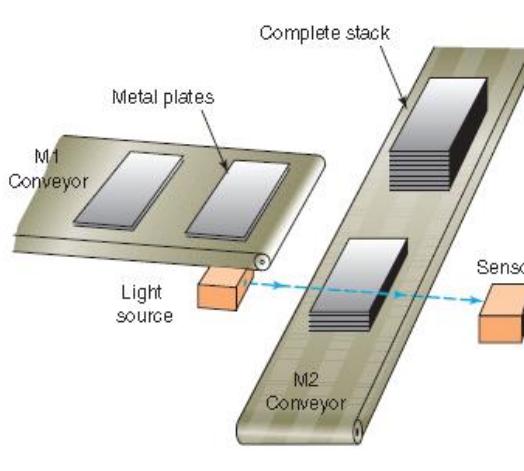
Programme: B.E.

Branch: Electronics and Instrumentation Engineering

Course Code: 19EI6PCAPC

Course: Automation in Process Control

Semester: VI


Duration: 3 hrs.

Max Marks: 100

Date: 05.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Compare and illustrate the distinctions between different types of automation		<i>CO1</i>	<i>PO1</i>	05
		b)	What are the key components and operational advantages of Direct Digital Control (DDC) systems in building automation		<i>CO1</i>	<i>PO1</i>	05
		c)	Suggest a suitable method to interface analog input/output devices with a PLC and summarize briefly		<i>CO3</i>	<i>PO4</i>	06
		d)	Suggest a suitable seal-in to be used while automating a particular process.		<i>CO2</i>	<i>PO2</i> <i>PO3</i>	04
			UNIT-II				
2	a)	Develop a ladder program for the following application shown in Fig 2(a) using appropriate logic as per IEC 61131.3 standards. Summarize the sequence of operation.			<i>CO2</i>	<i>PO2</i> <i>PO3</i>	07
			Fig 2(a)				

	b)	Draw the timing diagram and describe the working of on-delay timer.	CO2	PO2 PO3	06
	c)	Develop a ladder program as per IEC 61131.3 standards to simulate Automatic Stacking Program as depicted in Fig 2(c) and summarize the sequence of operation.	CO2	PO2 PO3	07
		<p>(a)</p>			
UNIT - III					
3	a)	A heating process involves a thumbwheel switch connected to the input module indicating temperature in degree Celsius. It is required to display the temperature values in Fahrenheit. Implement a suitable ladder logic (as per IEC 61131-3 standards) using math instructions to convert the recorded temperature in Celsius to Fahrenheit for display and justify the operation.	CO2	PO2 PO3	07
	b)	Design a suitable logic in compliance with the IEC 61131.3 standards to control multiple motors in a sequential process plant with different delay intervals.	CO2	PO2 PO3	07
	c)	Develop a suitable logic to illustrate the use of SQI instructions in a practical context.	CO2	PO2 PO3	06
UNIT - IV					
4	a)	It is required to facilitate effective monitoring and control of processes in a petrochemical plant, specifically addressing temperature control, pressure regulation, flow monitoring, and batch processing. Propose a suitable DCS architecture for this scenario and provide a justification for its selection	CO3	PO4	08
	b)	What are the main functional elements or components that constitute a Distributed Control System (DCS)?	CO3	PO4	06
	c)	Enumerate the key features of DCS that have contributed to its popularity in the industrial world?	CO3	PO4	06

		OR			
5	a)	Explain how the three stages of risk analysis can be used to manage risks in a project	CO4	PO2 PO6 PO7	05
	b)	Propose an Overall Safety Life Cycle (SLS) plan that follows the IEC 61508-1 standards to ensure the integration of safety considerations throughout the entire lifecycle of equipment	CO4	PO2 PO6 PO7	08
	c)	Propose a Layer of Protection Analysis (LOPA) methodology for the chemical process industry to serve as a risk assessment tool to evaluate the necessity of implementing Safety Instrumented Systems (SIS) involving the handling of hazardous materials.	CO4	PO2 PO6 PO7	07
		UNIT - V			
6	a)	Propose a suitable SCADA structure for Duke Energy, an American energy company that serves millions of customers, to monitor and control its power grid with regards to reliability, efficiency, and security. Justify your recommendation by analyzing the components of the proposed SCADA structure and their potential impact on the company's operations.	CO3	PO4	09
	b)	Explain the Monolithic SCADA Systems.	CO3	PO4	05
	c)	Analyze and compare the characteristics and functionalities of Programmable Logic Controllers (PLCs) and Supervisory Control and Data Acquisition (SCADA) systems from an engineering perspective	CO3	PO4	06
		OR			
7	a)	Evaluate the role and significance of an input and output instrumentation system, as well as the interface system of Human-Machine Interface (HMI), within a process control environment. Analyze the design considerations, functionality, and interplay between these systems, and assess their impact on data acquisition, control signal generation, operator engagement, and system performance.	CO3	PO4	08
	b)	Propose ways to implement the instrumentation, control, and human interface components in an automation system.	CO3	PO4	06
	c)	Identify areas where an HMI could be improved by following the six principles.	CO3	PO4	06
