

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

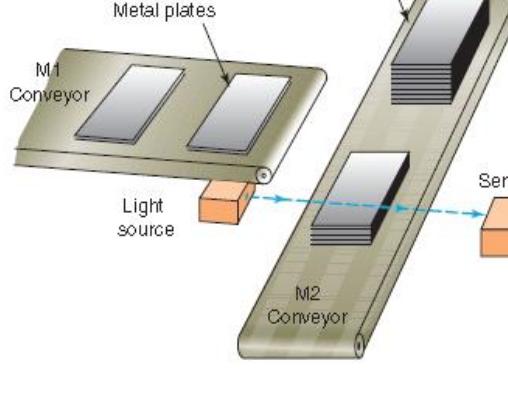
Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI6PCPSA

Max Marks: 100

Course: Process Automation


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Illustrate the hierarchical structure of an automation system using a diagram, clearly explaining the purpose and function of each level in the automation pyramid.	CO1	PO1	06
	b)	Explain the various types of automation, highlighting their distinctive features and applications.	CO1	PO1	09
	c)	Explain the Dual-Computer System for Direct Digital control system	CO1	PO1	05
OR					
2	a)	Explain how the PLC single scan cycle is used to process a ladder logic program, from reading inputs to updating outputs.	CO1	PO1	06
	b)	Explain the recommended wiring configurations for connecting both current-sourcing and current-sinking field devices to the DC input/output modules of a PLC	CO1	PO1	08
	c)	Explain the various types of Programmable Logic Controllers (PLCs) currently available in the market.	CO1	PO1	06
UNIT - II					
3	a)	<p>Diagram of a water level control system. A tank contains water with two sensor switches: a 'High sensor switch' at the top and a 'Low sensor switch' at the bottom. An 'ON/OFF' switch is connected to the tank. A 'MAN/AUTO' switch is also connected. Three output terminals are labeled: 'Pump running' (G), 'Low level' (R), and 'High level' (Y).</p>	CO2	PO2 PO3	09

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

Fig 3(a)

		Design a PLC program using ladder logic or function block diagrams as per IEC standards for the process as shown in Fig 3(a) and summarize the operation.			
	b)	Design a concise ladder logic diagram for a fluid pump system (Tank A to B) with momentary start/stop, requiring normally closed PS1 to start. The pump latches on with Start. Stop button stops it. Within 5 seconds of starting, normally closed PS2 and PS3 must be closed. If PS2 or PS3 opens, the pump stops immediately, and a 14-second restart delay is enforced. Show the safety interlock and restart delay clearly.	CO2	PO2 PO3	06
	c)	Explain the operational differences between NOTC and NOTO timers, accompanied by relevant timing diagrams	CO2	PO2 PO3	05
OR					
4	a)	<p>Fig 4(a)</p> <p>Design a PLC program using ladder logic or function block diagrams as per IEC standards for the process as shown in Fig 4(a) and summarize the operation.</p>	CO2	PO2 PO3	09
	b)	Design an IEC 61131-3 compliant ladder program for an annunciator flasher circuit utilizing an on-delay timer. Briefly explain the operational sequence	CO2	PO2 PO3	06
	c)	Explain the operation of retentive timers, accompanied by relevant timing diagrams	CO2	PO2 PO3	05

UNIT - III					
5	a)	<p>Diagram illustrating the automatic stacking control process. A stack of metal plates moves from M1 Conveyor to M2 Conveyor. A light source emits a beam that is blocked by the plates. A sensor detects the beam obstruction.</p>		CO2 PO2 PO3	07
		<p>Fig 5(a)</p> <p>Design a ladder logic or sequential flow chart as per IEC standards illustrating the Automatic stacking control process as shown in Figure 5(a). Explain briefly the working of the program.</p>			
	b)	<p>“Cascading counters prove particularly useful in processes that necessitate tracking or controlling events or quantities that exceed the counting capacity of a single counter”. Design a suitable ladder program to justify the statement and summarize the execution of the program.</p>		CO2 PO2 PO3	08
	c)	<p>Explain how BCD output interface module can be connected to a seven-segment LED display board.</p>		CO2 PO2 PO3	05
		OR			
6	a)	<p>Design a ladder logic program employing a Sequencer Compare (SQC) instruction to implement a sequential activation based on input conditions and explain the execution of the program.</p>		CO2 PO2 PO3	09
	b)	<p>Design a PLC program that can manage inventory for three different products on a single conveyor line, considering varying storage capacities for each product.</p>		CO2 PO2 PO3	06
	c)	<p>Explain the various Math Instructions used in PLC</p>		CO1 PO1	05
		UNIT - IV			
7	a)	<p>Explain the concept of "Hierarchy of Plant Operations" within the context of a DCS. How does a DCS typically align with these operational levels?</p>		CO3 PO4 PO6	10
	b)	<p>Describe the importance of design considerations while suggesting a typical DCS architecture.</p>		CO3 PO4 PO6	10
		OR			

	8	a)	Suggest the key functional components of a Distributed Control System (DCS) work together to achieve process control and automation in industries.	CO3 PO4 PO6		10
		b)	Explain the similarities and differences between embedded based interface compared to a desktop-based interface.	CO3 PO4 PO6		10
UNIT - V						
	9	a)	Describe briefly the main components that collectively form a complete SCADA system.	CO3 PO4 PO6		10
		b)	Identify and describe how each of the following SCADA components would be deployed and utilized in a Distribution Monitoring and Control applications.	CO3 PO4 PO6		10
OR						
	10	a)	How does an Operator/Mimic Panel differ with the software-based visualization of an Operator Station? Explain with suitable diagrams	CO3 PO4 PO6		10
		b)	How does a Human-Machine Interface (HMI) facilitate the connection and communication with both input and output instrumentation devices in an industrial control system?	CO3 PO4 PO6		10

B.M.S.C.E. - EVEN SEMESTER 25