

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

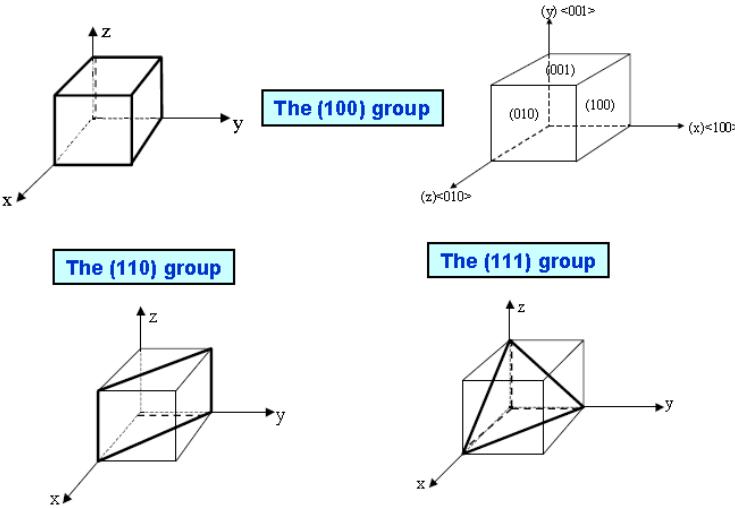
January 2024 Semester End Main Examinations

Programme: B.E.

Branch: ES- Cluster Elective

Course Code: 19EI7CE2ME

Course: MEMS


Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the constituents of a microsystem with a neat block diagram illustrating its interconnections	CO1	PO1 PO2		06
		b)	Explain the functional relationship between the various components in microsensors and microactuators using a suitable diagram.	CO1	PO1 PO2		08
		c)	Compare the core functionalities of microelectronics and microsystems	CO1	PO1 PO2		06
			UNIT - II				
	2	a)	Describe a specific method for analyzing the diverse compounds in a biological sample using electro-osmosis mobility	CO2	PO1 PO2		08
		b)	“Chemical sensor can be used to measure chemical compositions in a gas”. Justify if the statement is true.	CO2	PO1 PO2		05
		c)	Enumerate the principal means commonly used in actuating motions of microdevices. Justify how the "memory effect" of shape-memory alloys can be used in microactuation.	CO2	PO1 PO2		07
			UNIT - III				
	3	a)	How does miniaturization affect the interaction of electrostatic forces in MEMS. Justify with suitable expressions	CO2	PO1 PO2		07
		b)	What do you mean by Force Scaling Factor? Estimate the associate changes in the acceleration (a) and the time (t) and the power supply (P) to actuate a MEMS component if its weight is reduced by a factor of 10.	CO2	PO1 PO2		07
		c)	Explain how an electromagnetic force would experience a 10,000 times reduction if the size is reduced by a factor of 10 in scaling of MEMS devices.	CO2	PO1 PO2		06

		OR			
4	a)	Identify the characteristics of silicon for the principal planes as shown in Fig 4(a)	CO2	PO1 PO2	05
		Fig 4(a)			
	b)	Suggest a suitable method to produce pure silicon crystal with suitable diagrams.	CO2	PO1 PO2	08
	c)	Explain the typical process flow for constructing SU-8 films with a suitable block diagram.	CO2	PO1 PO2	07
		UNIT - IV			
5	a)	Explain the various stages involved in the fabrication process with a suitable diagram	CO3	PO2	07
	b)	Suggest a suitable block diagram to illustrate ion implantation and summarize the operation.	CO3	PO2	07
	c)	“Epitaxy deposition process is used to deposit polysilicon films on silicon substrate surfaces”. Validate the statement with suitable diagram and summarize the operation.	CO3	PO2	06
		OR			
6	a)	Elaborate on the removal of substrate materials through dry etching using gaseous etchants detailing various techniques with suitable diagrams.	CO3	PO2	08
	b)	Explain the specific parameters that differentiate dry etching and wet etching	CO3	PO2	06
	c)	Discuss how surface micromachining is different from bulk manufacturing	CO3	PO2	06
		UNIT - V			
7	a)	Enumerate the major reliability issues and failure mechanisms involved in the microsystem packaging	CO4	PO2	06

	b)	Discuss the challenges associated with interfacing in microsystems that require attention and resolution	CO4	PO2	07
	c)	Describe the sequential process flow chart outlining the integrated assembly, packaging, and testing method employed for the large-scale production of micro pressure sensors.	CO4	PO2	07

B.M.S.C.E. - ODD SEM 2023-24