

# B.M.S. College of Engineering, Bengaluru-560019

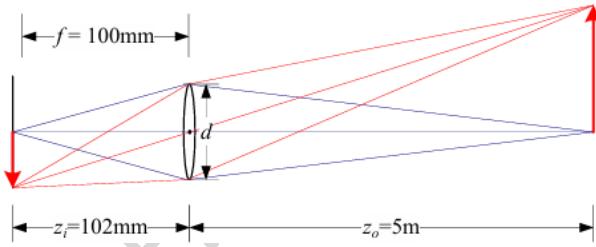
Autonomous Institute Affiliated to VTU

## January / February 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: VII**

**Branch: Electronics and Instrumentation Engineering**


**Duration: 3 hrs.**

**Course Code: 22EI7PE3CV**

**Max Marks: 100**

**Course: Computer Vision**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| <b>MODULE- I</b> |    |                                                                                                                                                                                                                                                          |  |  |  | <b>CO</b>  | <b>PO</b>  | <b>Marks</b> |
|------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|------------|------------|--------------|
| 1                | a) | What is computer vision? Discuss any two applications of computer vision.                                                                                                                                                                                |  |  |  | <i>CO1</i> | <i>PO1</i> | <b>06</b>    |
|                  | b) |  <p>Figure 2.b indicates a lens optics used in a camera, to form a 3D point into a 3D image. Explain how the pixel formation takes place using this camera model</p> |  |  |  | <i>CO1</i> | <i>PO1</i> | <b>06</b>    |
|                  | c) | Discuss about the Geometric 3D primitives that can be used to describe 3D shapes.                                                                                                                                                                        |  |  |  | <i>CO1</i> | <i>PO1</i> | <b>08</b>    |
| <b>OR</b>        |    |                                                                                                                                                                                                                                                          |  |  |  |            |            |              |
| 2                | a) | Illustrate with an example how a linear filter, in which an output pixel's value is determined as a weighted sum of input pixel values uses 2D convolution.                                                                                              |  |  |  | <i>CO1</i> | <i>PO1</i> | <b>06</b>    |
|                  | b) | Show that the Laplacian of Gaussian (LoG) operation can be achieved by decomposing the operator into four one dimensional convolution. Also discuss about the LoG operator                                                                               |  |  |  | <i>CO1</i> | <i>PO2</i> | <b>06</b>    |
|                  | c) | How will scaling, symmetry and separability of Gaussian operator help in image processing? Explain                                                                                                                                                       |  |  |  | <i>CO1</i> | <i>PO1</i> | <b>08</b>    |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as

|  |   |    | <b>MODULE - II</b>                                                                                                                                                                                                                              |     |               |
|--|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
|  | 3 | a) | Canny's Edge detector is one of the popular techniques to identify the boundary of an object in an image. Justify the statement by discussing the edge detection algorithm in detail.                                                           | CO2 | PO1 <b>07</b> |
|  |   | b) | Why do we consider corners as important key points in images? How are they considered as vision features? Discuss with Harris Corner detection techniques?                                                                                      | CO2 | PO2 <b>06</b> |
|  |   | c) | Discuss the algorithm steps of Hough procedure to detect lines in images.                                                                                                                                                                       | CO2 | PO2 <b>07</b> |
|  |   |    | <b>OR</b>                                                                                                                                                                                                                                       |     |               |
|  | 4 | a) | What do you mean by interpolation and decimation in images? How are they applied in Laplacian image pyramids? Discuss                                                                                                                           | CO2 | PO2 <b>10</b> |
|  |   | b) | Illustrate the working of Scale Invariant Feature Transform for computing Gradient orientation and magnitudes, thereby generation of histogram as features.                                                                                     | CO2 | PO2 <b>10</b> |
|  |   |    | <b>MODULE- III</b>                                                                                                                                                                                                                              |     |               |
|  | 5 | a) | Define image segmentation rules? How segmentation is different from Edge based approach in object identification? Discuss.                                                                                                                      | CO2 | PO2 <b>07</b> |
|  |   | b) | How is watershed computation in segmentation can help partitioning the image into different regions? Discuss                                                                                                                                    | CO2 | PO2 <b>05</b> |
|  |   | c) | Compare and contrast split-merge technique with graph cut segmentation technique for object detection.                                                                                                                                          | CO2 | PO2 <b>08</b> |
|  |   |    | <b>OR</b>                                                                                                                                                                                                                                       |     |               |
|  | 6 | a) | Given a binary image of a connected object, where the pixels forming the boundary of the object have the following coordinates in a 2D grid: (2,3), (2,4), (3,4), (4,4), (4,3), (4,2), (3,2), (2,2), calculate the area enclosed by the object. | CO2 | PO2 <b>07</b> |
|  |   | b) | What is object labeling in image processing, and how does it aid in identifying distinct objects in a binary image? explain                                                                                                                     | CO2 | PO2 <b>07</b> |
|  |   | c) | Explain the process of boundary tracking in image segmentation. How does it help in extracting the contour of an object?                                                                                                                        | CO2 | PO2 <b>06</b> |
|  |   |    | <b>MODULE - IV</b>                                                                                                                                                                                                                              |     |               |
|  | 7 | a) | What are the assumptions made while applying background subtraction method for motion detection? discuss                                                                                                                                        | CO3 | PO2 <b>05</b> |
|  |   | b) | How is motion Jacobians being different from the basic frame differencing? Discuss.                                                                                                                                                             | CO3 | PO2 <b>07</b> |

|                  |    |                                                                                                                                                                                         |                                                                                                 |     |           |           |
|------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----|-----------|-----------|
|                  |    | c)                                                                                                                                                                                      | Discuss with necessary equations used in detection of optical flow using Lucas Kanade algorithm | CO3 | PO2       | <b>08</b> |
| <b>OR</b>        |    |                                                                                                                                                                                         |                                                                                                 |     |           |           |
| 8                | a) | How will Multi-frame motion estimation be carried out using spatio-temporal analysis? Explain                                                                                           | CO3                                                                                             | PO2 | <b>08</b> |           |
|                  | b) | Discuss windowed Sum of squared difference (SSD) algorithm to estimate the motion.                                                                                                      | CO2                                                                                             | PO2 | <b>07</b> |           |
|                  | c) | List the major steps of motion detection in frame differencing method and explain the algorithm.                                                                                        | CO3                                                                                             | PO2 | <b>05</b> |           |
| <b>MODULE- V</b> |    |                                                                                                                                                                                         |                                                                                                 |     |           |           |
| 9                | a) | Explain the concept of Content-Based Image Retrieval (CBIR) and its primary components. How does it differ from traditional keyword-based image retrieval methods?                      | CO4                                                                                             | PO2 | <b>10</b> |           |
|                  | b) | What is Content-Based Video Retrieval (CBVR), and how does it extend the principles of CBIR to video data? elaborate                                                                    | CO4                                                                                             | PO2 | <b>10</b> |           |
| <b>OR</b>        |    |                                                                                                                                                                                         |                                                                                                 |     |           |           |
| 10               | a) | Define activity recognition in computer vision. Discuss how machine learning models can be used to classify and recognize human activities in videos.                                   | CO4                                                                                             | PO2 | <b>10</b> |           |
|                  | b) | Explain the concept of computational photography and how it differs from traditional photography? Explain technique High Dynamic Range (HDR) imaging used in computational photography. | CO4                                                                                             | PO2 | <b>10</b> |           |

\*\*\*\*\*