

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 22EI7PE3RA

Max Marks: 100

Course: Robotics and Automation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Describe the key components of a robot and their functions. How do sensors, actuators, and controllers work together to enable a robot to perform tasks?	CO1	PO1	06
		b)	Explain the role of an end-effector in a robotic system. What are the different types of end-effectors, and how do they contribute to a robot's functionality?	CO1	PO1	06
		c)	Classify the robots based on their configuration, tasks performed and the control system used	CO1	PO1	08
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	What does the term Degrees of Freedom (DOF) mean in the context of robot classification? How does the number of DOF influence the capabilities of a robot manipulator? Discuss.	CO1	PO1	06
		b)	Consider a robot manipulator with 3 rotational joints and 2 prismatic joints. How many degrees of freedom does it have, and what implications does this have for its range of motion?	CO1	PO1	06
		c)	Explain the concept of workspace in relation to robot manipulators. How is the workspace affected by the number of degrees of freedom in a manipulator?	CO1	PO1	08
MODULE - II						
3	a)	What are the Denavit-Hartenberg (DH) parameters, and why are they used in robotics? Discuss with the help of 3 links aligned with three different axes not crossing with each other as shown in the following figure 3(a).	CO2	PO1	07	

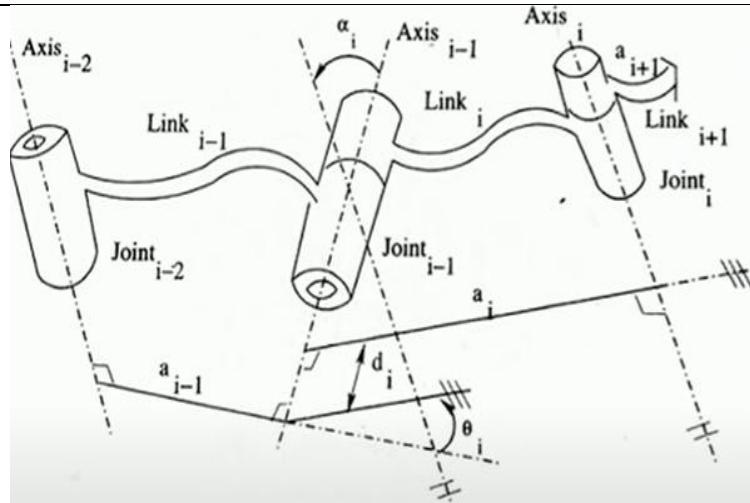
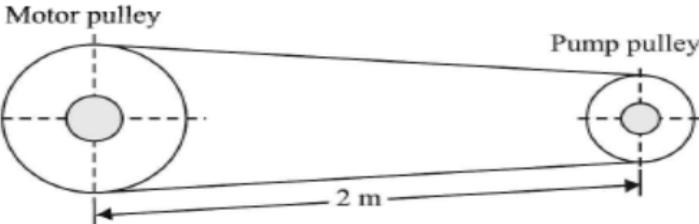



Figure 3(a)

	b)	Given a 2-DOF planar manipulator with link lengths, $L1=1.0$ m, $L2=0.8$ m and Joint angles $1=450$, $2=300$, using the DH parameter convention, compute the position of the end-effector in Cartesian coordinates (x, y). Also determine the orientation of the end-effector	CO2	PO2	06
	c)	Explain the Jacobian matrix in the context of robotic manipulators. Derive the expression for the Jacobian for a 2-DOF planar manipulator .	CO2	PO2	07
		OR			
4	a)	What are singularities in robotic manipulators? Explain the different types of singularities with examples, and discuss their implications on the robot's performance and control.	CO2	PO2	10
	b)	Consider a 2D robotic arm with two links. The first link has a length of 5 units, and the second link has a length of 4 units. The end-effector (tool) needs to reach a target point P(6,3). Using the inverse kinematics approach, calculate the joint angles θ_1 and θ_2 that will allow the arm to reach this point. Draw the schematic.	CO2	PO2	10
		MODULE - III			
5	a)	With relevant diagrams and equations explain the principle of operation of Synchros and Resolvers and how are they used to measure position.	CO3	PO2	07
	b)	Analyze the various criteria used for sensor classification and discuss the implications of each category with diagram.	CO3	PO2	05
	c)	Suggest a suitable system to measure the linear velocity of a moving object using a Hall effect sensor and justify the same with appropriate diagram.	CO3	PO2	08
		OR			

	6	a)	Explain the elements in a Vision System and how photosensor is able to measure the intensity of the light reflected by an object.	CO3	PO2	07
		b)	Describe the role of a calibration pattern in the camera calibration process	CO3	PO2	07
		c)	Explain the relationship among the camera coordinate system, the image coordinate system, and the world coordinate system	CO3	PO2	06
			MODULE- IV			
	7	a)	Propose a typical block diagram of a servomotor control system to measure actual position and speed.	CO3	PO2	08
		b)	Suggest a suitable actuator system along with subsystems to drive a robot including its grippers.	CO3	PO2	07
		c)	Justify how does the energization sequence affect the rotational direction of the VR stepper motor using suitable diagram.	CO3	PO2	05
			OR			
	8	a)	Suggest a conceptual design for a pneumatic circuit to power a novel industrial robot application and explain function of each component	CO3	PO2	08
		b)	Explain the various types of belt drives available for transmission of power.	CO3	PO2	07
		c)	A motor drives a pump for lifting water from underground sink to overhead tank. The diameter of the pulley is 500 mm on the motor and running at 300 rpm. The pulley diameter of the pump is 200 mm. The motion and power are transmitted by an open belt drive as shown in Figure. 8c. Calculate the following for an open belt drive whose centre distance is 2 m: (i) velocity ratio, (ii) linear velocity	CO3	PO2	05
			<p style="text-align: center;">Figure. 8c</p>			
			MODULE - V			
	9	a)	Explain how sensors and actuators are interfaced with a microcontroller, detailing the use of ADCs, PWM, and communication protocols like I2C and UART.	CO4	PO2	10
		b)	Explain the process of programming a microcontroller to integrate a proximity sensor and a DC motor for a robotic arm.	CO4	PO2	10
			OR			

	10	a)	Discuss how sensor input drives actuator responses and also explain the role of timing and interrupts in ensuring precise and efficient operation.	CO4	PO2	10
		b)	Describe the key features of VAL II programming language for industrial robots. Write a sample VAL II program to pick and place an object from one location to another, including initialization, motion control, and error-handling commands.	CO4	PO2	10

B.M.S.C.E. - ODD SEM 2024-25