

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Semester: VII

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 19EI7PCVID

Max Marks: 100

Course: VLSI Design

Date: 12.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

- | | |
|---|---|
| 1 | a) State Moore's Law with neat sketch and explain generations of an IC? 06 |
| | b) Compare Bipolar and CMOS Technologies. 04 |
| | c) Discuss Twintub fabrication process with neat diagram 10 |

OR

- | | |
|---|--|
| 2 | a) Mention the advantages and disadvantages of Bi-CMOS inverter. 04 |
| | b) Derive pull up to pull down ratio of an NMOS inverter driven through one or more pass transistor. 10 |
| | c) Explain latch-up problem in CMOS circuit and list the remedies to overcome it. 06 |

UNIT - II

- | | |
|---|--|
| 3 | a) Illustrate with neat sketches, explain the lambda based design rules for wires, NMOS and CMOS transistor. 08 |
| | b) Sketch the circuit, stick diagram and layout for a two input CMOS NOR gate. 08 |
| | c) Obtain the scaling factor for the following parameter of a transistor
1) Channel resistance R_{on}
2) Maximum Operating Frequency f_o 04 |

UNIT - III

- | | |
|---|--|
| 4 | a) Develop a structured design of a bus arbitration logic for a n line bus 07 |
| | b) Draw circuit, CMOS stick diagram and layout for the equation $Y = \underline{(A \cdot B)} + \underline{(C \cdot D)}$ 07 |
| | c) What is parity generator? explain structured design approach for the implementation of parity generator and also draw NMOS stick diagram for parity generator 06 |

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV

- | | | |
|---|---|-----------|
| 5 | a) Implement and explain 4x4 barrel shifter along with stick diagram | 06 |
| | b) Discuss general arrangement of a 4-bit Arithmetic Processor | 04 |
| | c) Describe the cascading structure of four-bit CMOS dynamic shift register along with stick diagram. | 10 |

UNIT - V

- | | | |
|---|---|-----------|
| 6 | a) Describe the CAD tools used for design and simulation of a chip | 10 |
| | b) Sketch the circuit and working of three transistor dynamic RAM cell and also draw the stick diagram. | 10 |

OR

- | | | |
|---|---|-----------|
| 7 | a) Derive and discuss optimization of NMOS and CMOS inverter | 10 |
| | b) Sketch the circuit,stick diagram for an NMOS and CMOS pseudo static memory cell. Also, explain its working | 10 |
