

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Instrumentation Engineering

Course Code: 19EI7PCVID

Course: VLSI Design

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Date: 20.02.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Compare the Bipolar and CMOS Technologies.	04
	b) State Moore's Law. Explain Generations of an IC with a neat sketch.	06
	c) Describe the fabrication process of an NMOS transistor with a neat diagram	10

OR

2	a) List the advantages and disadvantages of Bi-CMOS technology.	04
	b) Explain latch-up problem in CMOS circuit. List the remedies available to overcome latch-up problem.	06
	c) Derive the expression for a pull up to pull down ratio of an NMOS inverter driven through one or more pass transistor.	10

UNIT - II

3	a) Suggest the alternative forms of pull up for an inverter configuration.	06
	b) Discuss the Lambda based design rules with respect to the followings: i. Wires ii. NMOS transistor iii. CMOS transistor.	08
	c) Determine the scaling factor for the following parameter of a transistor i. Power-speed Product P_t ii. Maximum Operating Frequency f_o iii. Saturation current I_{dss} .	06

UNIT - III

4	a) What is parity generator? Explain structured design approach for the implementation of a parity generator and also draw NMOS stick diagram for the parity generator	06
---	--	----

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

- b) Develop a structured design of a bus arbitration logic for an n-line bus. **07**
- c) Develop a CMOS stick diagram and layout for the expression $Y = \overline{(W \cdot X) + (Y \cdot Z)}$ **07**

UNIT - IV

- 5 a) Explain general arrangement of a 4-bit arithmetic processor. **04**
- b) Implement and explain 4x4 barrel shifter along with stick diagram **06**
- c) Discuss the cascading structure of 4-bit NMOS dynamic shift register along with a stick diagram. **10**

UNIT - V

- 6 a) Describe four transistor dynamic and six transistor static CMOS memory cell with circuit diagram. **10**
- b) Describe the CAD tool used for design and simulation of a chip **10**

OR

- 7 a) Bring out a summative assessment of three transistor dynamic RAM cell in terms of working, area occupied, dissipation and volatility. **10**
- b) Explain the optimization techniques with respect to area, switching power dissipation, asymmetry in rise and fall times and noise margin for a CMOS inverter. **10**
