

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 22EI7PCVLI

Max Marks: 100

Course: VLSI Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Compare the Bipolar and CMOS Technologies.	<i>CO1</i>	<i>PO1</i>	05
	b)	State Moore's Law. Explain Generations of an IC with a neat sketch.	<i>CO1</i>	<i>PO1</i>	05
	c)	Describe the fabrication process of an NMOS transistor with a neat diagram	<i>CO1</i>	<i>PO1</i>	10
OR					
2	a)	List the advantages and disadvantages of Bi-CMOS technology.	<i>CO1</i>	<i>PO1</i>	05
	b)	Explain latch-up problem in CMOS circuit. List the remedies available to overcome latch-up problem.	<i>CO1</i>	<i>PO1</i>	05
	c)	Derive the expression for a pull up to pull down ratio of an NMOS inverter driven through one or more pass transistor.	<i>CO</i>	<i>PO2</i>	10
MODULE- II					
3	a)	Suggest the alternative forms of pull up for an inverter configuration.	<i>CO2</i>	<i>PO2</i>	10
	b)	Discuss the Lambda based design rules with respect to the followings: i. Wires ii. NMOS	<i>CO2</i>	<i>PO2</i>	05
	c)	Determine the scaling factor for the following parameter of a transistor i. Power-speed Product Pt ii. Maximum Operating Frequency f_0	<i>CO2</i>	<i>PO2</i>	05
OR					
4	a)	What is the importance of Scaling? Find the scaling factors for Area, gate delay, Operating frequency and Power Dissipation	<i>CO2</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Design a CMOS logic circuit for the following function using minimum number of transistors and hence draw the stick diagram and layout. $Y = \overline{AB} + CD$	CO3	PO3	10
		MODULE - III			
5	a)	What is parity generator? Explain structured design approach for the implementation of a parity generator and also draw NMOS stick diagram for the parity generator.	CO3	PO3	10
	b)	Develop a structured design of a bus arbitration logic for an n-line bus.	CO3	PO3	10
		OR			
6	a)	Design 2 input NAND, NOR gates using pseudo nMOS , Dynamic CMOS	CO3	PO3	10
	b)	Develop a structured design of a bus arbitration logic for an Multiplexer.	CO3	PO3	10
		MODULE- IV			
7	a)	Explain general arrangement of a 4-bit arithmetic processor.	CO4	PO1	04
	b)	Implement and explain 4x4 barrel shifter along with stick diagram	CO4	PO3	08
	c)	Discuss the cascading structure of 4-bit NMOS dynamic shift register along with a stick diagram	CO4	PO2	08
		OR			
8	a)	Explain the general considerations in subsystem design processes for MOS circuits and also illustrate the design Process	CO4	PO2	10
	b)	Design a 4- Four-line Gray Code to Binary Code converter	CO4	PO3	10
		MODULE - V			
9	a)	Explain the working principle of a one-transistor (1T) dynamic RAM cell. Discuss the role of the storage capacitor and access transistor in data storage and retrieval, along with the challenges of refresh cycles and data retention.	CO5	PO1	10
	b)	Describe the Computer-Aided Design (CAD) tools commonly used for the design and simulation of integrated circuits (chips).	CO5	PO2	10
		OR			
10	a)	Evaluate the three-transistor (3T) DRAM cell in terms of working principle, area efficiency, power dissipation, volatility, and suitability for modern applications.	CO5	PO2	10
	b)	Explain nMOS pseudo static memory cell	CO5	PO2	10
