

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

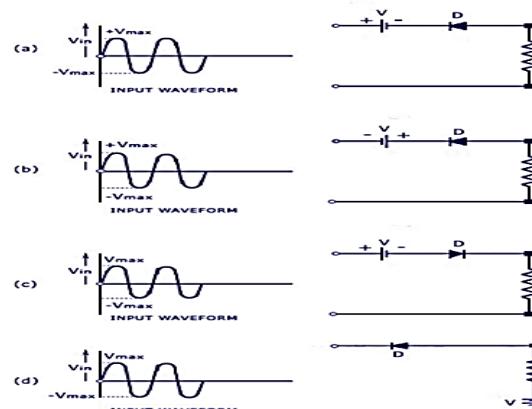
Semester: III

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

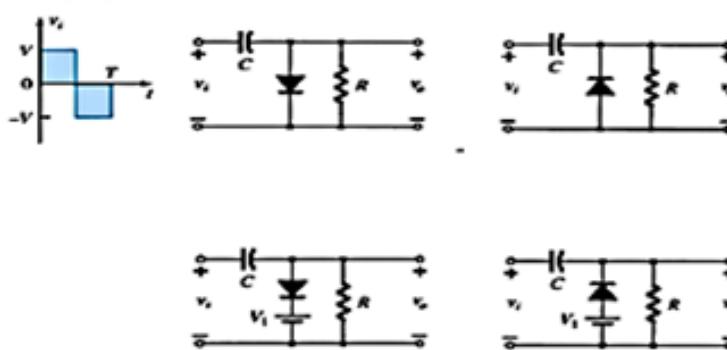
Course Code: 22ET3PCALC

Max Marks: 100


Course: Analog and Linear Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I


1 a) For the following circuits write the output waveforms.

08

b) For the Following clamping Circuits write the output waveforms

08

c) Draw the Frequency response of a BJT amplifier, mentioning the capacitive effect at low and high frequency. 04

UNIT - II

2 a) Write the block diagram of the following indicating A , A_f and β .

10

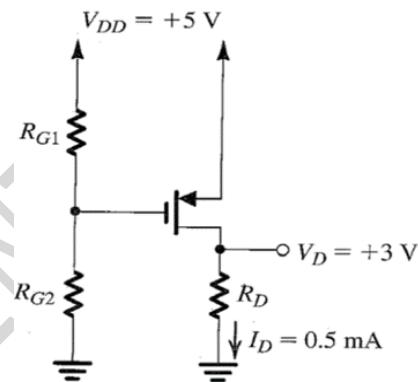
a. Voltage series feedback amplifier b. Voltage shunt feedback amplifier
c. Current series feedback amplifier d. Current shunt feedback amplifier.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

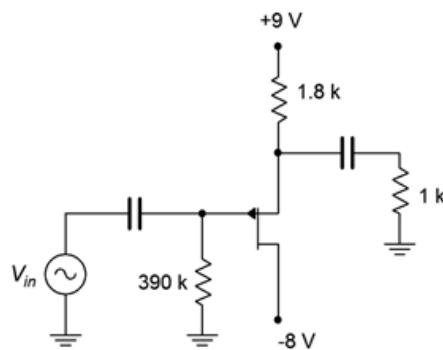
b) Explain the working principle of a class A transformer coupled power amplifier circuit. Show that maximum power conversion efficiency is 50% for class A power amplifier. 10

OR

3 a) Discuss briefly about various characteristics of an amplifier which are modified by negative feedback. Justify why negative feedback is preferred. 08


b) Explain the working principle of class B power amplifier circuit. Derive an equation for power conversion efficiency. 08

c) For a class B amplifier providing a 20V peak signal to a 16Ω load (speaker) and a power supply of $V_{cc} = 20V$, determine the input power, output power, and circuit efficiency. 04


UNIT - III

4 a) With the circuit derive for the voltage gain, input impedance and output impedance for the common source (CS) MOS amplifier with R_s . 08

b) Design the given circuit so that the MOSFET operates in saturation with $I_D = 0.5\text{mA}$ and $V_D = +3\text{V}$. Let the enhancement -type PMOS transistor have $V_t = -1\text{V}$ and $k'p (W/L) = 1\text{mA/V}^2$. What is the largest value that R_D can have while maintaining saturation region operation. 06

c) For the circuit shown in Figure, determine the input impedance and output voltage. Assume $V_{in} = 100\text{mV}$, $I_{DSS} = 36\text{ mA}$, $V_{GS(off)} = 3\text{V}$. 06

UNIT - IV

5 a) With a circuit diagram and relevant equations for gain , explain the operation of Instrumentation Amplifier circuit. 10

b) Explain the operation of full wave Precision Rectifier with the Transfer characteristics and output waveform, and mention its advantages. **10**

UNIT - V

6 a) Explain the working of R-2R DAC circuit and mention its advantages. **10**

b) Explain the Functional Block diagram of 555 IC. **10**

OR

7 a) Explain the working principle of 3 bit Flash type ADC with its advantages and Disadvantages

b) Explain the working principle of astable Multivibrator using 555 IC and mention its applications. **10**
