

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

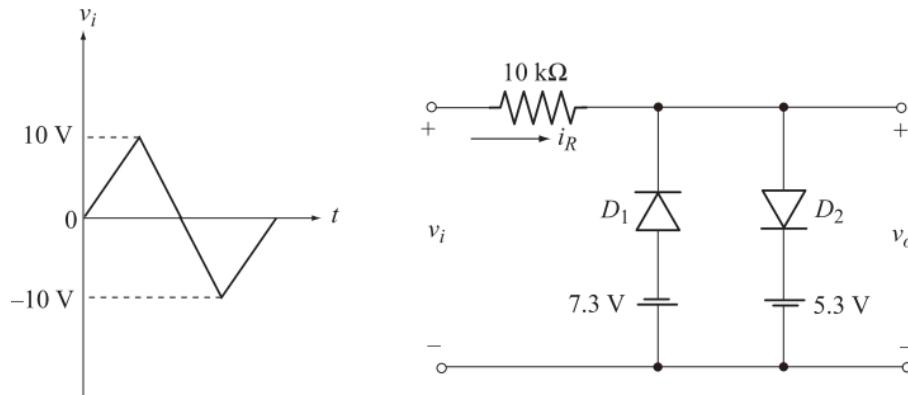
Branch: Electronics & Telecommunication Engineering

Course Code: 22ET3PCALC

Course: Analog and Linear Circuits

Semester: III

Duration: 3 hrs.


Max Marks: 100

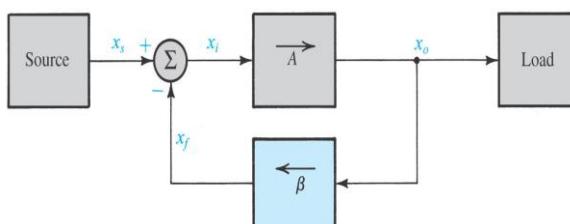
Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - I

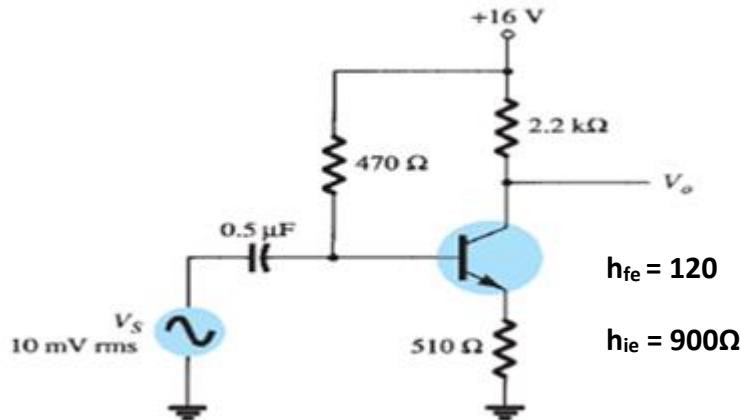
1 a) For the circuit shown in Fig.1, determine the transfer characteristics and sketch the waveform for V_o . **05**

Figure 1


b) Determine the value of R_c , R_E , R_1 and R_2 for the voltage divider circuit with $I_C = 10\text{mA}$, $V_{CE} = 12\text{V}$ and $V_{cc} = 24\text{V}$. Assume silicon transistor with beta equal to 100. **07**

c) What is an operating point? With a neat circuit diagram and relevant expressions explain voltage divider biasing of BJT. **08**

UNIT - II


2 a) With a neat circuit diagram, waveforms, explain the working of complementary symmetry class B amplifier. Also, derive an expression for conversation efficiency **08**

b) Identify the amplifier shown in Figure 2 and enumerate its properties. **07**

Figure 2

c) Calculate gain, feedback factor, gain with feedback and voltage gain with feedback for the circuit shown in Figure 3 05

Figure 3

OR

3 a) Derive the 08

- (i) input impedance and voltage gain with feedback for voltage shunt feedback
- (ii) output impedance with feedback for current series feedback

b) For a class B amplifier providing a 20V peak signal to a 16Ω load (speaker) and a power supply of $V_{cc} = 30V$, determine the input power, output power and circuit efficiency. 06

c) For a harmonic distortion reading of $D_2 = 0.1$, $D_3 = 0.02$, and $D_4 = 0.01$, with $I_1 = 4 A$ and $R_C = 8 \Omega$, calculate the total harmonic distortion, fundamental power component, and total power. 06

UNIT - III

4 a) With a neat diagram and i_d - V_{ds} characteristics, explain the operational of n - channel enhancement MOSFET. When 07

- (a) $V_{GS} \leq V_t$
- (b) $V_{GS} > V_t$ & $V_{DS} < V_{GS} - V_t$
- (c) $V_{GS} > V_t$ & $V_{DS} \geq V_{GS} - V_t$

b) For a $0.8\mu m$ process technology, for which $t_{ox} = 15nm$ and $\mu_n = 550cm^2/V-s$, find C_{ox} , k'_n and the over drive voltage V_{ov} , required to operate a transistor having $W/L = 20$ in saturation with $I_D = 0.2mA$. What is the minimum value of V_{DS} needed? 05

c) Derive expression for input resistance, output resistance, voltage gain and overall voltage gain of a common gate MOSFET amplifier. 08

UNIT - IV

5 a) Discuss the frequency response of a operational amplifier Also explain the Typical frequency response of op-amp 741. 06

b) Illustrate with the neat diagram and waveforms working of a ZCD. **06**

c) Derive an equation for output voltage of an Instrumentation amplifier using three Opamp with a neat circuit diagram and list its features. **08**

UNIT - V

6 a) Discuss the working of successive approximation ADC with neat sketches. **06**

b) Derive an equation for frequency of square waveform generated by an Astable multivibrator, using 555 timer. Also, explain the working with a neat circuit diagram. **08**

c) Explain the basic principle of a PLL, with a neat block schematic. **06**

OR

7 a) What output voltage would be produced by a D/A converter whose output voltage range is 0V to 10V and whose binary number is
 (i) 01 (for a 2 bit DAC)
 (ii) 1011 (for a 4 bit DAC)
 (iii) 11111001 (for an 8 bit DAC) **06**

b) Describe the principle of working of a weighted resistor DAC with a neat circuit diagram. Mention its limitations. **08**

c) Explain the working of a Flash ADC **06**
