

B.M.S. College of Engineering, Bengaluru-560019

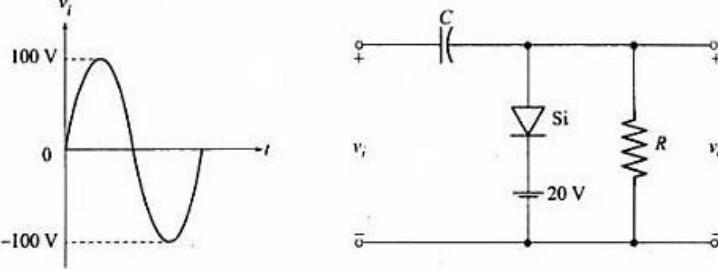
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

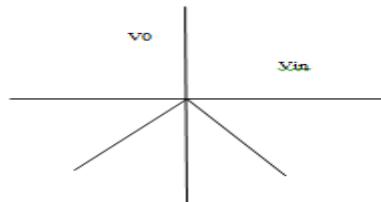
Programme: B.E.

Semester: III

Branch: Electronics and Telecommunication Engineering


Duration: 3 hrs.

Course Code: 22ET3PCALC


Max Marks: 100

Course: Analog and Linear circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Draw the r_e model for a voltage divider bias configuration and derive expressions for input impedance, output impedance and voltage gain.	CO2	PO1	10
	b)	What is an operating point? With a neat circuit diagram and relevant expressions, explain collector to base feedback resistor biasing of BJT.	CO1	-	10
OR					
2	a	For the circuit shown below, find and plot the waveform of v_o for the input indicated assuming ideal diode.	CO2	PO1	10
	b	<p>For the circuit shown below, find and plot the waveform of v_o for the input indicated.</p> <p>Input waveform v_i (sine wave from 0 to 100 V)</p>	CO3	PO2	10
		UNIT - II			
3	a)	Explain the working of class B complementary symmetry push pull amplifier. Also derive an expression for maximum conversion efficiency.	CO1 CO2	- PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>It is required to design a class B output stage to deliver an average power of 20 Watt to an 8Ω load. The power supply is to be selected such that V_{cc} is about 5V greater than peak output voltage. Determine the supply voltage required, the peak current drawn from each supply, the total supply power and power conversion efficiency.</p>	<i>CO2</i>	<i>PO1</i>	10
		OR			
4	a)	<p>Write the block diagram of the following indicating A, A_f and β.</p> <p>i) Voltage series feedback amplifier (ii) Voltage shunt feedback amplifier (iii) Current series feedback amplifier and (iv) Current shunt feedback amplifier.</p>	<i>CO1</i>	-	10
	b)	<p>Explain the working principle of a class A transformer coupled power amplifier circuit. Show that maximum power conversion efficiency is 50% for class A power amplifier.</p>	<i>CO1</i> <i>CO2</i>	<i>PO1</i>	10
		UNIT - III			
5	a)	<p>Derive an expression for i) input impedance ii) output impedance iii) voltage gain and overall gain for a common source amplifier with source resistance.</p>	<i>CO2</i>	<i>PO1</i>	10
	b)	<p>Explain the effects of biasing by fixing V_{GS} in a MOSFET with i_D-V_{GS} characteristics.</p>	<i>CO1</i>	-	10
		OR			
6	a)	<p>What is biasing? What are the types of biasing in MOSFET amplifiers? Explain each with circuit diagram</p>	<i>CO1</i>		10
	b)	<p>Consider a common source amplifier circuit with resistor R_s and current source biasing where $g_m=0.5\text{mA/V}$, $V_{DD}=15\text{V}$, $V_{ss}=-15\text{V}$, $R_G=5\text{M}\Omega$, $R_D=10\text{K}\Omega$, $R_L=12\text{K}\Omega$, $R_s=2\text{K}\Omega$ and $R_{sig}=100\Omega$. Find R_{in}, R_{out}, A_v, A_{v0} and G_v. Write its circuit diagram.</p>	<i>CO2</i>	<i>PO1</i>	10
		UNIT - IV			
7	a)	<p>Design a suitable op-amp circuit to get the transfer characteristics given below. Explain its working. Draw the necessary waveforms.</p>	<i>CO4</i>	<i>PO3</i>	10
	b)	<p>Sketch and Explain the circuit of (i) voltage to current converter with grounded and floating load (ii) current to voltage converter with relevant mathematical equations and mention its applications.</p>	<i>CO1</i>	-	10
		OR			
8	a)	<p>Explain with relevant circuit diagrams and equations how the total output offset voltage of an op-amp due to non-ideal DC characteristics is assessed</p>	<i>CO1</i>		10
	b)	<p>With a neat circuit diagram, explain the working of instrumentation amplifier by deriving an expression for its output. What are the characteristics of instrumentation amplifiers?</p>	<i>CO2</i>	<i>PO1</i>	10

UNIT - V				
9	a)	Draw and explain the functional block diagram of 555 timer and hence, For the circuit given below, If $R_1=6.8K\Omega$, $R_2=3.3K\Omega$ and $C=0.1\mu F$, calculate t_{HIGH} , t_{LOW} , Frequency and duty cycle.	<i>CO1</i> <i>CO2</i>	- <i>PO1</i>
				10
	b)	Identify the circuit given and hence analyze the circuit operation for the digital representation 11010100.	<i>CO3</i>	<i>PO2</i>
				10
OR				
10	a)	Explain, with the help of a neat circuit diagram and truth table, the operation of the parallel comparator A/D converter.	<i>CO1</i>	-
	b)	With the help of a block diagram of the PLL, explain its basic principles. Define capture range, lock range, and pull-in-time.	<i>CO1</i>	-
