

B.M.S. College of Engineering, Bengaluru-560019

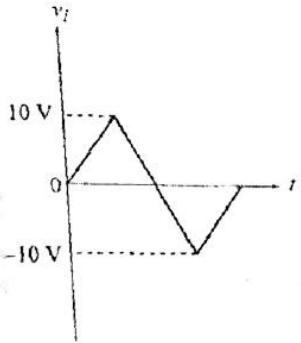
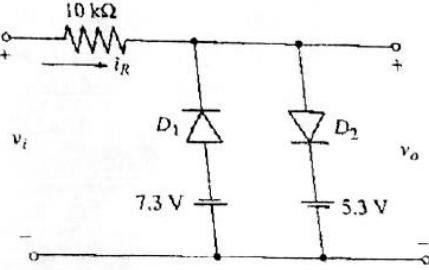
Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics and Telecommunication engineering



Duration: 3 hrs.

Course Code: 22ET3PCALC

Max Marks: 100

Course: Analog and Linear circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive the equations for voltage gain, current gain, input impedance and output impedance for a voltage divider configuration using r_e model.	CO3	PO2	10
	b)	For the circuit shown below, determine the transfer characteristics and sketch the waveform for V_o and I_R . Assume silicon diodes.	CO2	PO1	10
OR					
2	a	Explain the following with circuit diagram and waveform. i)positive peak clamper ii) Negative peak clamper	CO1		10
	b	A voltage divider bias CE amplifier has $V_{CC} = 14V$, $R_1 = 33K\Omega$, $R_2 = 6.8K\Omega$, $R_C = 1K\Omega$, $R_E = 470\Omega$. The silicon transistor used has a $\beta = 100$, $C_{C1} = 0.01\mu F$, $C_{C2} = 0.1 \mu F$, $C_E = 47\mu F$. With the help of r_e model, find the voltage gain, input impedance, output impedance	CO2	PO1	10
UNIT - II					
3	a)	With a neat circuit diagram, waveforms, explain the working of complementary symmetry class B amplifier. Also ,derive an expression for conversion efficiency.	CO1		08
	b)	For a class B amplifier providing a 20V peak signal to a 16Ω load speaker and a power supply of $V_{cc} = 30V$, determine the	CO2	PO1	06

DerImportant Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		input power, output power and circuit efficiency.			
	c)	For a harmonic distortion reading of $D_2=0.1$, $D_3=0.02$ and $D_4=0.01$ with $i_1=4A$ and $R_c=8\Omega$, calculate the total harmonic distortion, fundamental power component and total power	CO2	PO1	06
		OR			
4	a)	With a neat block diagram derive expressions for gain with feedback, input impedance and output impedance for current series feedback configuration.	CO1		10
	b)	Calculate gain, input and output admittance for current series feedback amplifier with $A=-300$, $R_i=1.5K\Omega$, $R_o=50K\Omega$ and feedback fraction $\beta = -1/15$.	CO2	PO1	04
	c)	Derive an expression for miller effect induced input and output capacitance for an inverting amplifier	CO2	PO1	06
		UNIT - III			
5	a)	Derive an expression for transconductance and voltage gain of a common source NMOS amplifier	CO2	PO1	10
	b)	Consider a common source amplifier circuit with resistor R_s and current source biasing where $g_m=0.5mA/V$, $V_{DD}=15V$, $V_{ss} = -15V$, $R_G=5M\Omega$, $R_D=10K\Omega$, $R_L=12K\Omega$, $R_s=2K\Omega$ and $R_{sig}=100\Omega$. Find R_{in} , R_{out} , A_v , A_{v0} and G_v . Write its circuit diagram.	CO2	PO1	10
		OR			
6	a)	What is biasing? What are the types of biasing in MOSFET amplifiers? Explain each with circuit diagram	CO1		10
	b)	Explain the effects of biasing by fixing V_{GS} in a MOSFET with i_D - V_{GS} characteristics.	CO1		10
		UNIT - IV			
7	a)	Explain with relevant circuit diagrams and equations how the total output offset voltage of an op-amp due to non-ideal DC characteristics is assessed.	CO1		06
	b)	Explain the following with respect to op-amp 741. i)Open loop gain as function of frequency ii)Closed loop gain as a function of frequency.	CO1		06
	c)	With a neat circuit diagram, explain the working of instrumentation amplifier by deriving an expression for its output. What are the characteristics of instrumentation amplifiers?	CO1		08
		OR			
8	a)	Explain full wave precision rectifier along with circuit diagram and necessary equations.	CO1		10
	b)	Explain inverting and non-inverting comparator with positive and negative reference voltages along with circuit diagram and waveform	CO2	PO1	10
		UNIT - V			
9	a)	With a neat pin diagram, explain the working of 555 timer as astable multivibrator to get a duty cycle of 50%.Draw the relevant waveforms. Derive an expression for its frequency of	CO1		08

		oscillation			
	b)	Design a monostable multivibrator using 555 timer to get a pulse width of 4msec assuming $C=0.05\mu F$.Derive the necessary equation.	CO3	PO2	06
	c)	Define capture range, lock range and pull-in –time of PLL.	CO1		06
		OR			
10	a)	With a neat diagram explain the working of monostable multivibrator. Draw the relevant waveforms.	CO1		10
	b)	Explain briefly the following DAC/ADC specifications. i)Resolution, (ii) Linearity an (iii) Accuracy	CO1		05
	c)	Explain the working of 4 bit weighted resistor DAC. Write its truth table taking $V_{ref}=5V$	CO1		05
