

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Electronics & Telecommunication Engineering

Course Code: 22ET3PCALC

Course: Analog and Linear Circuits

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 08.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Draw the r_e model for a voltage divider bias configuration and derive expressions for input impedance, output impedance and voltage gain. **08**

b) Determine the levels of I_{CQ} and V_{CEQ} for the voltage divider bias circuit shown in the figure 1. **06**

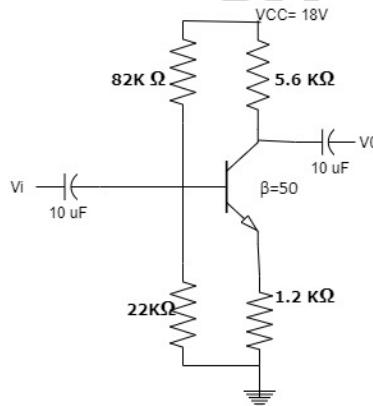


Figure.1

c) Analyze the circuit shown in figure 2 and sketch the input and output voltage waveform assuming an ideal diode. ($V_i = 20\sin\omega t$). **06**

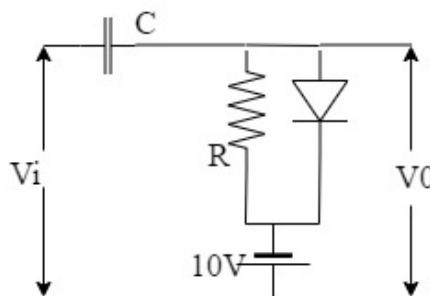


Figure 2

UNIT - II

2 a) With a neat block diagram derive expressions for gain with feedback, input impedance and output impedance for voltage series feedback configuration. **08**

b) Calculate gain, input and output admittance for current series feedback amplifier with $A = -300$, $R_i = 1.5\text{K}\Omega$, $R_o = 50\text{K}\Omega$ and feedback factor $\beta = -1/15$. **06**

c) Calculate the total harmonic distortion for an output signal having fundamental amplitude of 2.5V, second harmonic amplitude of 0.25V, third harmonic amplitude of 0.1V and fourth harmonic amplitude of 0.05V. **06**

OR

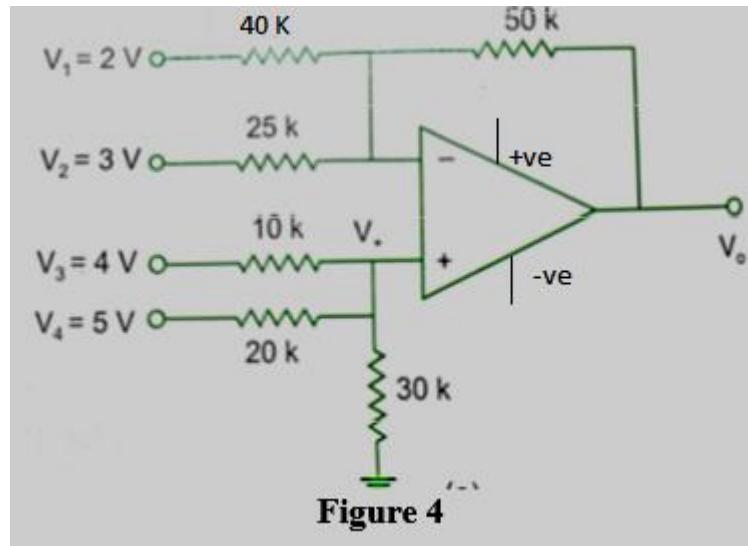
3 a) Explain the working of class B complementary symmetry push pull amplifier. Also derive an expression for maximum conversion efficiency. **10**

b) It is required to design a class B output stage to deliver an average power of 20Watt to an 8Ω load. The power supply is to be selected such that V_{CC} is about 5V greater than peak output voltage. Determine the supply voltage required, the peak current drawn from each supply, the total supply power and power conversion efficiency. **10**

UNIT - III

4 a) Derive an expression for i) input impedance ii) output impedance iii) voltage gain and overall voltage gain for a common source amplifier with source resistance. **10**

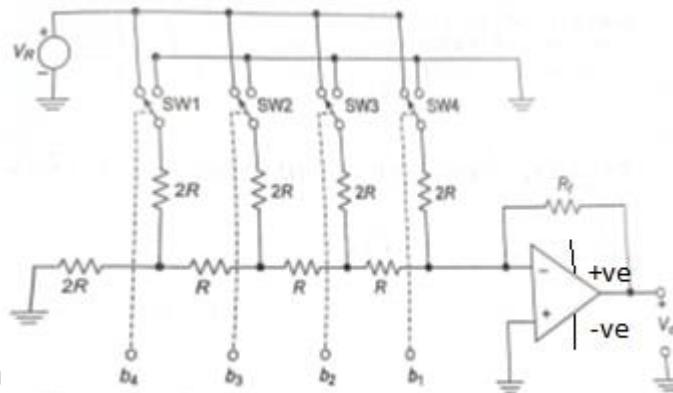
b) Explain the effects of biasing by fixing V_{GS} in a MOSFET with i_D - V_{GS} characteristics. **10**


UNIT - IV

5 a) With a neat circuit diagram describe the working of the circuit which gives the output shown in the figure3 for an input signal $V_i = 10\sin\omega t$ **10**

Figure 3

b) Find V_o for the circuit shown in figure 4. **06**


c) Mention the advantages of negative feedback in op-amp

04

UNIT - V

6 a) With a neat functional diagram describe the working of 555 Timer for monostable operation **10**

b) For the circuit shown in figure 5, determine the value of R_f that should be connected to achieve the following output conditions for $R=10\text{K}\Omega$ and $V_R=10\text{V}$ **10**

Figure 5

- i) The value of LSB at the output is 0.5V
- ii) An analog output of 6V for a binary input of 1000
- iii) The full scale output voltage of 12V
- iv) The actual maximum output voltage of 10V

OR

7 a) Describe the basic operation of Phase Locked Loop (PLL) with a neat block diagram. **10**

b) With neat diagram explain the working of dual slope ADC. **10**
