

B.M.S. College of Engineering, Bengaluru-560019

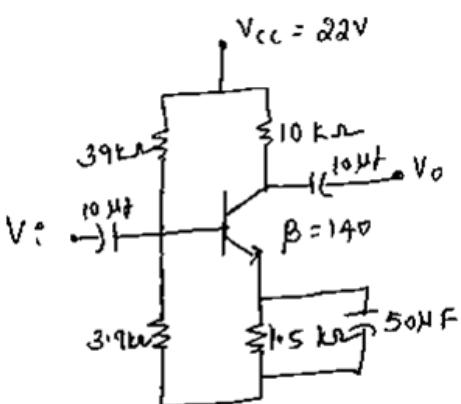
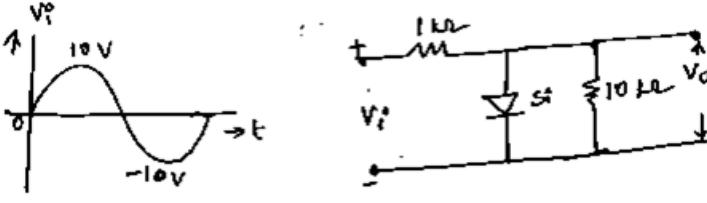
Autonomous Institute Affiliated to VTU

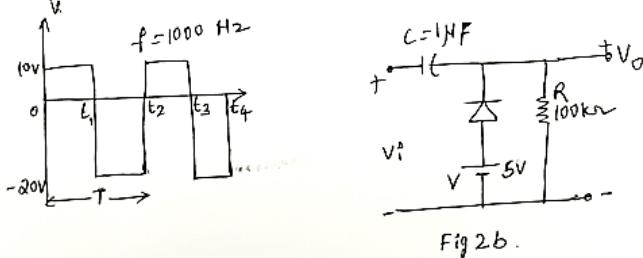
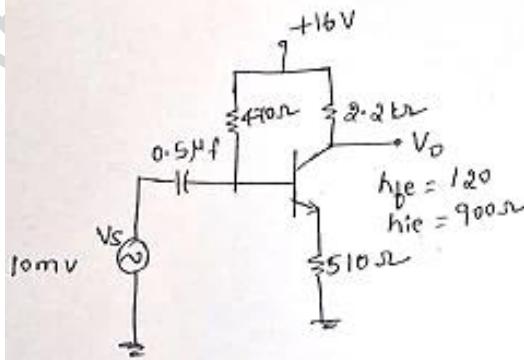
June 2025 Semester End Main Examinations

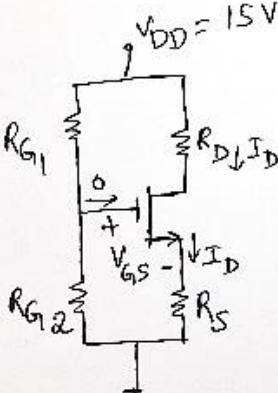
Programme: B.E.

Semester: III

Branch: Electronics & Telecommunication Engineering



Duration: 3 hrs.



Course Code: 23ET3PCALC


Max Marks: 100

Course: Analog and Linear Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a) Determine the bias voltage V_{CE} and the current I_c for the voltage divider bias shown below in Fig.1a.	CO1		06
		<p>Fig 1a.</p>			
		b) For the network of Fig.1b below, sketch v_o , explain the circuit operation	CO1		06
	<p>Fig: 1b.</p>				
	c) Draw the low frequency small signal r_e model of a transistor in CE configuration. Derive the equation for voltage gain, current gain, input impedance and output impedance for a BJT in CE configuration using r_e model.	CO1		08	
	OR				

2	a)	Describe any two series clipper, along with circuit diagram and appropriate reference voltage levels	CO1		06
	b)	Determine the V_o for the following circuit in Fig.2b.	CO2	PO1	06
		<p>Fig 2b.</p>			
UNIT - II					
3	a)	Calculate voltage gain of the following network shown in Fig.3a	CO3	PO2	06
		<p>Fig: 3a</p>			
	b)	Determine the voltage gain, input and output impedance with feedback for voltage series feedback having $A = -100$, $R_i = 10k\Omega$, $R_o = 20 k\Omega$ for feedback of a) $\beta = -0.1$ and b) $\beta = -0.5$	CO3	PO2	06
	c)	Write the block diagram of the following indicating A , A_f and β i) Voltage series feedback amplifier	CO1		08

		ii) Voltage shunt feedback amplifier iii) Current series feedback amplifier iv) Current shunt feedback amplifier			
		OR			
4	a)	Derive an expression for conversation efficiency for Series fed class A power amplifier	CO2	PO1	06
	b)	Calculate the efficiency of a transformer coupled amplifier for a supply of 12 V and outputs of: i) $V(p)= 12V$ ii) $V(p)= 6V$ iii) $V(p)= 2V$	CO2	PO1	06
	c)	For a class B amplifier providing a 30 V peak signal to a 16Ω load(speaker) and a power supply of $V_{cc}=20$ V, determine the input power, output power, circuit efficiency, and power dissipation.	CO2	PO1	08
		UNIT - III			
5	a)	Explain biasing of MOS amplifier by Fixing V_{GS} along with circuit diagram and equations.	CO1		06
	b)	Design the circuit shown in Fig.5b to establish $I_D=0.5mA$. MOSFET parameters are $V_t=1v$, $k_n w/L=1mA/v^2$ $V_{DD}=15V$ and $\lambda=0$.	CO2	PO1	06
		<p>Fig: 5b.</p>			
	c)	Derive the equation for input resistance, output voltage, voltage gain of common source amplifier with a source resistance.	CO2	PO1	08
		OR			
6	a)	Explain the concept of biasing of MOSFET using a constant current source with circuit diagram and equations.	CO1		06
	b)	Design the circuit which is shown in Fig 6b where $I_D=0.5mA$, $V_t=1v$, $k_n w/L=1mA/v^2$, $V_{DD}=5 V$	CO2	PO1	06

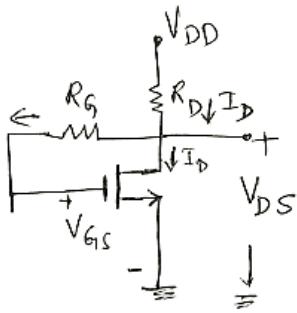


Fig 6b

- c) Write the small signal analysis of an amplifier with the MOSFET along with equivalent circuit of the amplifier and derivation.

UNIT - IV

- 7 a) With circuit diagram explain precision full wave rectifier along with equation for output voltage signal.

- b) Derive the V_{out} expression of instrumentation amplifier whose gain is controlled by an adjustable resistance.

- c) With a neat circuit diagram, Explain working of inverting Schmitt along with input-output waveforms , transfer characteristics, when UTP=+2 V, LTP=-2V

OR

- 8 a) Explain voltage to current converter with float load and grounded load with relevant circuit diagram and equations.

- b) What is an analog comparator? Assume an input of $V_{in}=6\sin\omega t$ and explain the working of Inverting comparator with $V_{ref}=+3V$, $V_{ref}=-3V$, $V_{ref}=0V$. (b) Non inverting comparator with $V_{ref}=+3V$, $V_{ref}=-3V$, $V_{ref}=0V$

- c) Analyze the circuit shown in Fig 8b and arrive at the equation for output voltage considering all resistors are same.

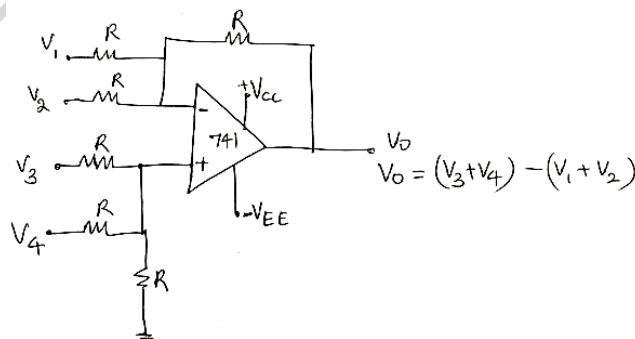


Fig.8b

UNIT - V					
9	a)	With a neat functional diagram and pin diagram explain the working of 555 monostable multivibrator. Draw the relevant waveforms	CO1		08
	b)	A dual slope ADC uses a 16-bit counter and a 4 MHz clock rate. The maximum input voltage is +10V. The maximum integrator output voltage should be -8V when the counter has cycled through 2^n counts. The capacitor used in the integrator is $0.1\mu\text{F}$. Find the value of the resistor R of the integrator.	CO2	PO1	06
	c)	What output voltage would be produced by a D/A converter whose output is 0 to 10V and whose input binary number is (i)10 (for a 2-bit D/A converter) (ii) 0110 (for a 4-bit DAC) (iii) 10111100 (for a 8-bit DAC)	CO2	PO1	06
OR					
10	a)	With a neat diagram explain the working of 555 astable multivibrator. Draw the relevant waveforms.	CO1		08
	b)	With a neat circuit diagram and truth table, explain the working of bit weighted resistor DAC	CO1		06
	c)	With block diagram and an example Explain the working of Successive approximation ADC.	CO1		06
