

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

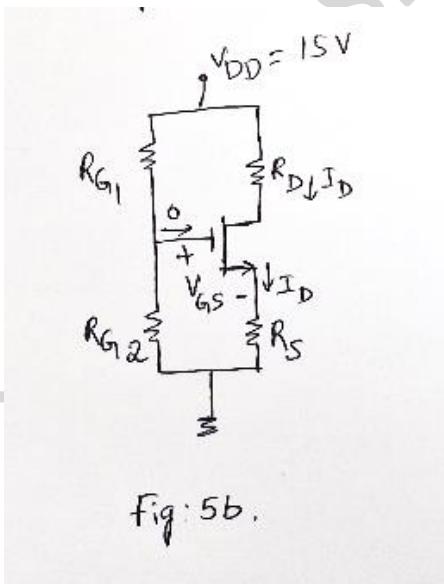
Programme: B.E.

Semester: III

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET3PCALC


Max Marks: 100

Course: Analog and Linear Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Design a clipper circuit to clip the negative signal at 2 volts using Series Clipping circuit.	CO1			04
	b)	Explain the design constraints of classical discrete-circuit biasing arrangement with circuit and relevant equations and explain how R_E provides a negative feedback action to stabilize the bias current.	CO1			08
	c)	Design the Voltage Divider Bias network of the amplifier to establish a current $I_E = 1$ mA, using a power supply of $V_{CC} = +12$ v. The transistor is specified to have a nominal β value of 100.	CO1			08
			OR			
2	a)	Derive the expression for i_c and g_m using of Hybrid- π Model of the BJT (consider BJT as voltage controlled current source)	CO1			04
	b)	Explain with a neat circuits diagram the biasing using a Collector-to-Base Feedback Resistor. Derive the expressions for I_E and V_{CB}	CO1			08
	c)	Design the circuit of collector to base bias CE amplifier to obtain a dc emitter current of 1 mA, maximum gain, and a ± 2 -V signal swing at the collector; that is, design for $V_{CE} = +2.3$ V. Let $V_{CC} = 10$ V and $\beta = 100$.	CO1			08
			UNIT - II			
3	a)	Derive the expression for gain with feedback using block diagram of general structure of the feedback amplifier.	CO2	PO1		08
	b)	Explain the following properties of Negative feedback: (a) Gain De-sensitivity (b) Bandwidth Extension (c) Decrease in Non-linear effect (d) Increase in SNR	CO2	PO1		12
			OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	Derive the expression of power-conversion efficiency of Class A amplifier with help of a neat circuit diagram and explanation	CO2	PO1	08
		b)	Explain the working of Class B output stage amplifier with help of neat circuit diagram and transfer characteristics. It is required to design a class B output stage to deliver an average power of 20 W to an 8Ω load. The power supply is to be selected such that V_{CC} is about 5 V greater than the peak output voltage. This avoids transistor saturation and the associated nonlinear distortion and allows for including short-circuit protection circuitry. Determine the supply voltage required, the peak current drawn from each supply, the total supply power, and the power-conversion efficiency. Also determine the maximum power that each transistor must be able to dissipate safely.	CO2	PO1	12
		UNIT - III				
	5	a)	Explain the effects of Biasing by Fixing V_{GS} in a MOSFET with i_D - V_{GS} characteristic	CO3	PO1	08
		b)	Design the circuit of Fig. 5b to establish a dc drain current $I_D = 0.5$ mA. The MOSFET is specified to have $V_t = 1$ V and $(kn' W/L) = 1$ mA/V ² . For simplicity, neglect the channel-length modulation effect (i.e., assume $\lambda = 0$). Use a power-supply $V_{DD} = 15$ V.	CO3	PO2	08
		<p>Fig. 5b.</p>				
		c)	Derive the expression for the Signal Current in the Drain Terminal for small signal operation with the help of a neat Conceptual amplifier circuit diagram.	CO3	PO1	04
		OR				
	6	a)	Explain the Biasing by Fixing V_G and Connecting a Resistance in the Source for MOSFET with the help of neat circuit diagrams	CO3	PO1	08
		b)	Find the dc current I_D and DC voltage V_D , g_m , voltage gain for amplifier circuit shown in Fig. 6b. if $v_{gs} = 0.2 \sin \omega t$ volts, find v_d	CO3	PO2	08

assuming small-signal approximation holds. Let $V_{DD} = 5V$, $R_D = 10K\Omega$, $V_t = 1V$, $(k_n' W/L) = 20\mu A/V^2$, $V_{GS} = 2V$ assume $\lambda = 0$.

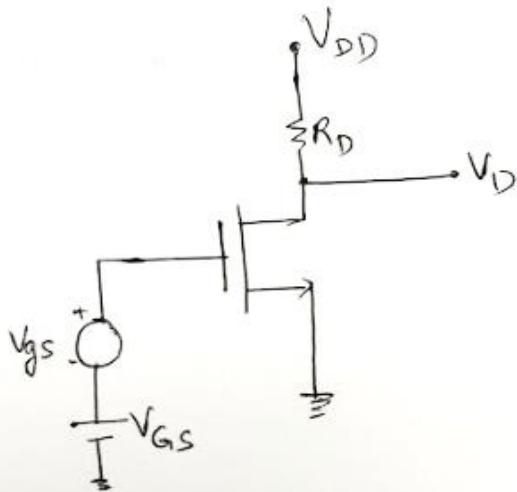


Fig. 6b

c) Derive the expression for the Voltage Gain of a MOSFET amplifier. Draw the instantaneous waveforms for v_{GS} and v_{DS}

UNIT - IV

7 a) Derive the expression for the closed loop gain of the Inverting and Non-inverting amplifier

CO3 PO2 **04**

b) Explain in detail positive and negative wave precision rectifier

CO4 PO1 **10**

OR

8 a) Explain with a neat circuit diagram Instrumentation Amplifier

CO4 PO1 **10**

b) Explain the following with a neat circuit diagram

- a. Comparator
- b. Virtual ground

CO4 PO1 **10**

UNIT - V

9 a) Explain the ADC using Successive-approximation method with help neat circuit diagram.

CO3 PO1 **10**

b) Explain the DAC using R-2R ladder with help neat circuit diagram

CO3 PO1 **10**

OR

10 a) Explain the internal block diagram of 555 timer

CO3 PO1 **10**

b) Explain with neat circuit the operation of Mono stable Multivibrator

CO3 PO1 **10**
