

B.M.S. College of Engineering, Bengaluru-560019

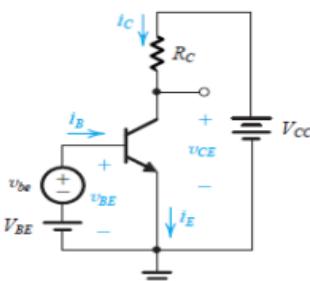
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

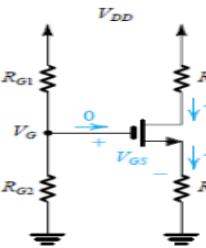
Programme: B.E.

Semester: III

Branch: Electronics and Telecommunication Engineering


Duration: 3 hrs.

Course Code: 23ET3PCALC


Max Marks: 100

Course: Analog and Linear Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the design constraint of classical discrete-circuit biasing arrangement with circuit and relevant equations and also explain how does R_E provide a negative feedback action to stabilize the bias current.	<i>CO1,2</i>	<i>PO1, 2,3</i>	08
	b)	Calculate the voltage gain of the circuit shown in Fig. 1b for $v_{be} = 0.005 \cos \omega t$ V, also find v_{ce} and i_b , if V_{BE} is adjusted to yield a dc collector current of 1 mA, $V_{CC} = 15$ V, $R_C = 5$ k Ω , and $\beta = 100$.	<i>CO1,2</i>	<i>PO1,2,3</i>	08
	c)	 Fig. 1b	<i>CO1,2</i>	<i>PO1,2,3</i>	04
UNIT - II					
2	a)	Prove the following properties of Negative feedback: (a) Gain Desensitivity (b) Bandwidth Extension	<i>CO1,2</i>	<i>PO1,2,3</i>	10
	b)	Derive the expression of Gain, Input-Resistance, and Output-resistance for voltage amplifier with the help of a neat circuit diagram and explanation.	<i>CO1,2</i>	<i>PO1,2,3</i>	10
OR					
3	a)	Derive the expression of power-conversion efficiency of Class A amplifier with the help of a neat circuit diagram and explanation.	<i>CO1,2</i>	<i>PO1,2,3</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Derive the expression of power-conversion efficiency of Class B amplifier with the help of a neat circuit diagram and explanation.	CO1,2	PO1,2,3	10
		UNIT - III			
4	a)	Explain the effects of Biasing by Fixing V_{GS} in a MOSFET with i_D-V_{GS} characteristic.	CO1,2	PO1,2,3	08
	b)	Design the circuit of Fig. 3b to establish a dc drain current $I_D = 0.5$ mA. The MOSFET is specified to have $V_t = 1$ V and $(kn' W/L) = 1$ mA/V ² . For simplicity, neglect the channel-length modulation effect (i.e., assume $\lambda = 0$). Use a power-supply $V_{DD} = 15$ V. $I_g = 1\mu A$.	CO1,2	PO1,2,3	08
		<p>Fig.3b</p>			
	c)	Explain with a neat circuit diagram the Biasing of MOSFET using a Drain-to-Gate Feedback Resistor.	CO1,2	PO1,2,3	04
		UNIT - IV			
5	a)	Explain positive and negative half wave precision rectifier with the help of neat circuit diagrams and relevant waveforms.	CO3,4	PO1,2,3	10
	b)	Explain with a neat circuit diagram Instrumentation Amplifier Using Transducer Bridge.	CO3,4	PO1,2,3	10
		UNIT - V			
6	a)	Explain the DAC using R-2R ladder with the help of a neat circuit diagram.	CO3,4	PO1,2,3	10
	b)	Explain the internal block diagram of 555 timer with a neat diagram.	CO3,4	PO1,2,3	10
		OR			
7	a)	Explain the ADC using the Successive-approximation method with the help of a neat circuit diagram.	CO3,4	PO1,2,3	10
	b)	Explain with a neat circuit diagram the working of a Monostable Multivibrator.	CO3,4	PO1,2,3	10
