

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: III

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET3PCSSA

Max Marks: 100

Course: Signals and Systems: Analog

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1. a) Obtain the Energy and Power of the following signal and classify as Energy or power signal **05**

$$x(t) = \begin{cases} 5t & 0 \leq t \leq 10 \\ 0 & \text{otherwise} \end{cases}$$

- b) Consider the signal $x(t)$ given below: **10**

$$x(t) = u(t+2) + u(t) - 2u(t-2)$$

Sketch the following:

- (i) $x(t)$
- (ii) $3x(t)$
- (iii) $x(t/4)$
- (iv) $x(t-4)$
- (v) $x(2t-4)$
- (vi) $x(t)-x(t-2)$
- (vii) $\frac{d}{dt}x(t)$
- (viii) $\int_{-\infty}^t x(t)dt$

- c) Test the following systems for linearity, and classify as Linear/non-linear **05**

(i) $y(t) = x(t) + 10$

(ii) $y(t) = 2x(t) + 5 \frac{d}{dt}x(t)$

UNIT - II

- 2 a) Consider two Linear Time Invariant systems, A and B, with impulse response as given below: **08**

$$h_A(t) = e^{-3t}u(t) \quad h_B(t) = e^{-5t}u(t)$$

- (i) Obtain the equivalent impulse response of the two systems connected in parallel
- (ii) Obtain the equivalent impulse response of the two systems connected in series

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) The impulse response of a system is given below:

$$h(t) = 4e^{-4t}u(t)$$

08

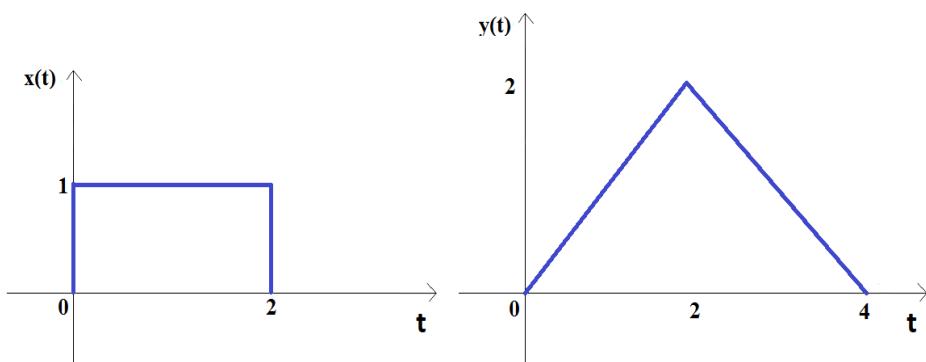
- (i) Sketch the impulse response and comment on the stability of the system
- (ii) Obtain and sketch the step response of the system
- (iii) Give the circuit to obtain the given impulse response
- (iv) Give the impulse response of the inverse of the system

c) State and prove properties of LTI system.

04

OR

3 a) Consider the signal $x(t)$ given below:


$$x(t) = 2\{u(t) - u(t - 5)\}$$

08

- (i) Obtain and sketch the convolution of $x(t)$ with itself
- (ii) Obtain and sketch the auto-correlation of $x(t)$

b) The input-output pair of an LTI system is given below:

08

Obtain and sketch the output for the following inputs:

$$(i) \quad x_2(t) = \begin{cases} 1 & 0 < t < 2 \\ -1 & 2 < t < 4 \end{cases}$$

$$(ii) \quad x_3(t) = \delta(t) - \delta(t - 2)$$

c) Test the signals given below for orthogonality

04

$$x(t) = \begin{cases} 1 & 0 \leq t \leq 2 \\ 0 & \text{otherwise} \end{cases} \quad y(t) = \begin{cases} 1 & 0 \leq t \leq 1 \\ -1 & 1 < t \leq 2 \end{cases}$$

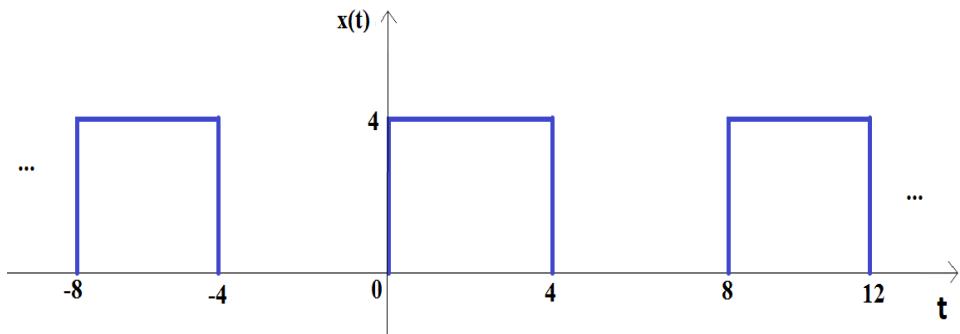
UNIT - III

4 a) Obtain and sketch the Fourier Transform of the following signals:

10

$$(i) \quad x(t) = e^{-2t}u(t)$$

$$(ii) \quad y(t) = \begin{cases} 4 & -2 \leq t \leq 2 \\ 0 & \text{otherwise} \end{cases}$$


b) Determine the complex exponential Fourier series representation of the signal $x(t) = \cos(2t + \frac{\pi}{4})$

10

OR

5 a) Obtain and sketch the Fourier Transform of the signal given below:

10

- b) Derive the Fourier series representation of the following periodic signals: **10**

$$x(t) = \cos(\pi t/2) + \sin(2\pi t/3)$$

Also obtain the Fourier transform representation. Sketch the spectrum.

UNIT - IV

- 6 a) Consider the differential equation of a system given below: **08**

$$y(t) = 3x(t) + 5 \frac{d}{dt}x(t) + 7 \frac{d^2}{dt^2}x(t) - 9 \frac{d}{dt}y(t) - 11 \frac{d^3}{dt^3}y(t)$$

- (i) Give the Direct Form-I implementation
- (ii) Give the Direct Form-II implementation

- b) Consider the differential equation of a system given below: **12**

$$6y(t) = x(t) - 5 \frac{d}{dt}y(t) - \frac{d^2}{dt^2}y(t)$$

- (i) Obtain the system transfer function $H(s)$
- (ii) Obtain the system impulse response $h(t)$, and comment on the stability
- (iii) Sketch the pole-zero plot and comment on the stability
- (iv) Obtain the Frequency response $H(\omega)$ of the system
- (v) Sketch the magnitude response and comment on the type of the filter

UNIT - V

- 7 a) (i) Obtain the transfer function $H(s)$ of the 5th order Butterworth prototype filter. **08**
- (ii) Sketch the pole-zero plot of the 5th order Low-Pass filter with cut-off $\omega_c=1$ rad/sec
- (iii) Sketch the pole-zero plot of the 5th order High-Pass filter with cut-off $\omega_c=1$ rad/sec
- b) (i) Obtain the transfer function of a third order High-Pass Butterworth filter with cut-off 2 kHz and dc gain 6. **12**
- (ii) Give the OP-AMP implementation of the filter.
- (iii) Obtain the output of the filter, if the input to the filter is $2\sin(4000\pi t)$.
