

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET3PCSSA

Max Marks: 100

Course: Signals and Systems: Analog

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Classify the signals and give one example each	<i>CO1</i>	-	10
	b)	(i) A signal is given by $x(t) = 2\cos(\pi t)$. Find the fundamental time period (ii) A signal is given by $x(t) = \begin{cases} 1; & 0 \leq t \leq 1 \\ 0; & \text{otherwise} \end{cases}$. Determine energy or power. (iii) A signal is defined by $x(t) = 1 + t + t^2$. Determine its even and odd components.	<i>CO2</i>	<i>PO1</i>	10
UNIT - II					
2	a)	Prove that $x(t) * h(t) = h(t) * x(t)$ for convolution integral. Where $x(t)$ is the input signal and $h(t)$ is the impulse response of the system.	<i>CO1</i>	-	08
	b)	convolute the following signals $x_1(t) = e^{-2t}u(t)$ $x_2(t) = u(t+2)$	<i>CO2</i>	<i>PO1</i>	12
OR					
3	a)	Prove that $x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$ for convolution integral. Where $x(t)$ is the input signal and $h(t)$ are the impulse responses of the systems.	<i>CO1</i>	-	08
	b)	convolute the following signals $x_1(t) = \cos\pi t[u(t+1) - u(t-3)]$ $x_2(t) = u(t)$	<i>CO2</i>	<i>PO1</i>	12
UNIT - III					
4	a)	Find the Fourier transform of $x(t) = e^{-2t}u(t)$. Also sketch the magnitude and phase spectrum	<i>CO2</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	State and prove the following properties for Fourier Transform (i) linearity property (ii) Time shift property	CO1	-	10
		OR			
5	a)	State Dirichlet's conditions for a function to be expanded as a Fourier series.	CO1	-	04
	b)	State and prove Parsevals Theorem for Fourier Series	CO1	-	06
	c)	Evaluate Fourier Series coefficients and draw the spectrum for $x(t) = \sin 2\pi t + \cos 3\pi t$	CO2	PO1	10
		UNIT - IV			
6	a)	Draw the DF-I and DF-II structures for the following system $\frac{d^3}{dt^3} y(t) + 2 \frac{d}{dt} y(t) + 3y(t) = x(t) + 3 \frac{d}{dt} x(t)$	CO2	PO1	10
	b)	Draw the circuit for RC first order low pass filter and find the following. (i) Transfer Function (ii) Impulse response (iii) Frequency response (iv) Pole-Zero plot	CO2	PO1	10
		UNIT - V			
7	a)	Design a Butterworth filter with maximally flat response in passband and an acceptable attenuation of -2dB at 20 radians/second. The attenuation in the stopband should be more than 10dB beyond 30 radians/second.	CO3	PO3	10
	b)	Describe analog frequency transformations with relevant equations and examples	CO1	-	10
