

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET3PCSSA

Max Marks: 100

Course: SIGNALS AND SYSTEMS: ANALOG

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Give the classification of signals and systems with an example each	CO1	-	10
	b)	Determine whether the following signals are periodic or not periodic (i) $\cos t + \sin \sqrt{2}t$ (ii) $e^{-2t}u(t+2)$ (iii) $2u(t) + 2\sin 2t$ (iv) $u(t) - u(t-2)$ (v) $\cos^2 t$	CO3	PO2	10
OR					
2	a)	Prove the following with respect to convolution operation (i) $x(t) * \delta(t) = x(t)$ (ii) $x(t) * \delta(t - t_0) = x(t - t_0)$ (iii) $x(t) * u(t) = \int_{-\infty}^t x(\tau) d\tau$ (iv) $x(t) * u(t - t_0) = \int_{-\infty}^{t-t_0} x(\tau) d\tau$	CO2	PO1	10
	b)	Determine whether following signals are energy or power (i) $x(t) = e^{3t}u(t+2)$ (ii) $x(t) = u(t)$	CO3	PO2	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Evaluate the following integrals (i) $\int_{-\infty}^{\infty} \delta(t-5)e^{-2t} dt$ (ii) $\int_{-\infty}^{\infty} (t+2)^2 \delta(t-3) dt$	CO3	PO2	4
		UNIT - II			
3	a)	If $x(t) = \begin{cases} 1; & 1 \leq t \leq 3 \\ 0; & \text{otherwise} \end{cases}$ and $h(t) = \begin{cases} 1; & 2 \leq t \leq 3 \\ 0; & \text{otherwise} \end{cases}$ Evaluate $x(t)*h(t)$	CO3	PO2	10
	b)	An overall impulse response of a system is given by $h(t) = h_1(t) * [h_5(t) + h_2(t) * \{h_3(t) + h_4(t)\}]$ (i) Draw block diagram (ii) Find $h(t)$ if $h_1(t) = h_2(t) = 5\delta(t)$ and $h_3(t) = h_4(t) = h_5(t) = u(t)$	CO3	PO2	10
		OR			
4	a)	Derive expression for orthogonality of two signals. Write the expression for Hilbert transform and explain the terms used .	CO2	PO1	10
	b)	If $x(t) = u(t) - u(t-3)$ and $h(t) = 3x(t)$ Evaluate $x(t)*h(t)$	CO2	PO1	10
		UNIT - III			
5	a)	A signal is given by $x(t) = 2 + \cos\left(\frac{2\pi}{3}t\right) + 4\sin\left(\frac{5\pi}{3}t\right)$. Determine fundamental frequency and Fourier series coefficients.	CO3	PO2	10
	b)	Find the Fourier transform of (i) $x(t) = e^{-2t}u(t)$ (ii) $u(t)$	CO3	PO2	10
		OR			
6	a)	State and prove the following properties with respect to Fourier transform (i) Duality (ii) Time scaling (iii) Differentiation in frequency (iv) Frequency shifting	CO2	PO1	10

	b)	A signal is given by $x(t) = \cos(3\pi t) + \sin(2\pi t)$. Determine Fourier series coefficients. Also draw the magnitude and phase spectrum.	CO3	PO2	10
		UNIT - IV			
7	a)	A system is given by following equation $2\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + y(t) = 2x(t)$. (i) Find the impulse response of the system (ii) Find the output of the system if input is given by $x(t) = e^{-2t}u(t)$	CO3	PO2	10
	b)	Draw RC first order high pass filter and find the following (i) Transfer function (ii) Impulse response (iii) Frequency response (iv) Pole zero plot	CO2	PO1	10
		OR			
8	a)	Draw the Direct form I and Direct form II structure for the following system $5\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + y(t) = 2x(t) + 3\frac{d^2}{dt^2}x(t)$	CO2	PO1	10
	b)	A system is given by $\frac{d^2}{dt^2}y(t) + 4\frac{d}{dt}y(t) + 3y(t) = 4x(t) + 2\frac{d}{dt}x(t)$. Using Fourier transform find the output $y(t)$ if $x(t) = e^{-2t}u(t)$	CO2	PO1	10
		UNIT - V			
9	a)	Design a Butterworth filter for the following specifications $0.8 \leq H(s) \leq 1$; for $0 \leq F \leq 1000\text{Hz}$ $ H(s) \leq 0.2$; for $F \geq 5000\text{Hz}$	CO4	PO3	10
	b)	Describe analog to analog frequency transformations using relevant expressions and graphs.	CO1	-	10
		OR			
10	a)	Design a Butterworth filter with maximally flat response in pass band and an acceptable attenuation of -2dB at 20 rad/sec. The attenuation in stop band should be more than 10dB beyond 30 rad/sec.	CO4	PO3	10
	b)	Give practical realization of first order Butterworth Low pass filter. Also derive the expression for order of the filter	CO2	PO1	10
