

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

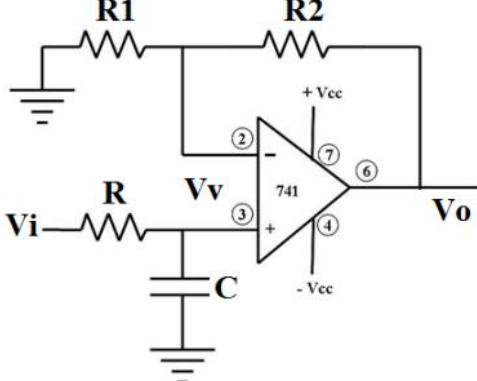
Semester: III

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET3PCSSA

Max Marks: 100


Course: Signals And Systems: Analog

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define even and odd signals with necessary equations and sketch the even and odd components of a unit step signal	CO1		07
	b)	A signal is given by $x(t) = \begin{cases} 1; & 0 \leq t \leq 1 \\ 0; & \text{otherwise} \end{cases}$. Determine whether the signal is energy signal or power signal. Hence find the energy or power.	CO2	PO1	07
	c)	A signal is given by $x(t) = u(t) - u(t - 1)$. It is applied through a differentiator. sketch the signals before differentiator and after differentiator.	CO2	PO1	06
OR					
2	a)	Consider the signal given below: $x(t) = 5\{u(t+2) - 2u(t) + u(t-2)\}$ Sketch the following: (i) $x(t)$ (ii) $x(t-4)$ (iii) derivative of $x(t)$ (iv) integral of $x(t)$ Compute the Energy of the signal Compute the Power of the signal	CO2	PO1	10
	b)	Consider the signal given below: $x(t) = 5\{u(t+2) - 2u(t) + u(t-2)\}$ $y(t) = 10\{u(t) - u(t-4)\}$ Compute and sketch the convolution of the signals	CO2	PO1	10
UNIT - II					
3	a)	Starting from the expression of convolution integral derive the expression for step response	CO1		08
	b)	convolute the following signals $x_1(t) = \cos \pi t [u(t+1) - u(t-3)]$ $x_2(t) = u(t)$	CO2	PO1	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR						
4	a)	Prove that $(x(t) * h_1(t)) * h_2(t) = x(t) * (h_1(t) * h_2(t))$ for convolution integral. Where x(t) is the input signal and h(t) are the impulse responses of the systems.	CO1			08
	b)	convolute the following signals $e^{-2t}u(t) * u(t - 1)$	CO2	PO1		12
UNIT - III						
5	a)	Find the Fourier transform of $x(t) = \cos\omega_0 t$. Also sketch the magnitude and phase spectrum	CO2	PO1		10
	b)	State and prove the following properties for Fourier Transform (i) Parsevals theorem (ii) Time shift property	CO1			10
OR						
6	a)	Find the Fourier transform of a unit step function	CO1			06
	b)	State and prove any two properties of Fourier series	CO1			06
	c)	Evaluate Fourier Series coefficients and draw the spectrum for $x(t) = \sin 4\pi t + \cos 2\pi t$	CO2	PO1		08
UNIT - IV						
7	a)	Draw the DF-I and DF-II structures for the following system $\frac{d^3}{dt^3} y(t) + 2 \frac{d}{dt} y(t) + 3y(t) = x(t) + 3 \frac{d}{dt} x(t)$	CO2	PO1		10
	b)	Draw the circuit for RL first order low pass filter and find the following. (i) Transfer Function (ii) Impulse response (iii) Frequency response (iv) Pole-Zero plot	CO2	PO1		10
OR						
8	a)	Consider the system transfer function given below: $H(s) = \frac{(s + 1)}{(s - 2)(s - 3)}$ (i) Sketch the pole-plot (ii) Obtain and sketch the impulse response (iii) Obtain the system differential equation (iv) Sketch the magnitude response and classify the system as Low-Pass/ High-Pass	CO2	PO2		10
	b)	Consider the cascade of two stages of RC circuit (Low-Pass configuration). Obtain: (i) The system transfer function (ii) System impulse response	CO2	PO2		10
UNIT - V						
9	a)	Describe analog to analog frequency transformations with	CO3	PO3		06

		relevant equations			
	b)	Derive the expression for finding the order of Butterworth filter	CO1		08
	c)	Describe the procedure of analog filter design using Butterworth filter			06
		OR			
10	a)	Explain salient features of analog Butterworth filters	CO1		05
	b)	Derive the transfer function of the first order circuit given below:	CO1		05
	c)	 Design and implement the second order analog High-Pass Butterworth filter to have gain of 4, cut-off frequency of 5KHz. Give the pole-plot and the transfer function of the designed filter.	CO1		10

B.M.S.C.E. - ODD SEMESTER 2024-25