

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET3PCSSA

Max Marks: 100

Course: Signals and Systems: Analog

Date: 15.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1. a) Determine the average power for the signal given in Fig Q-1. 04

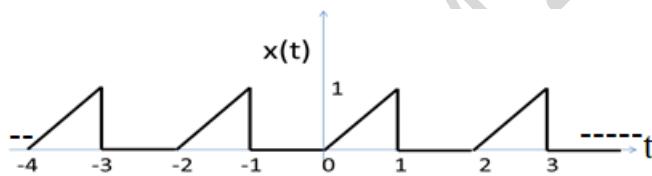


Fig: Q-1

- b) Determine whether the following signals are periodic or not. If periodic, find the fundamental period: 04
- $x(t) = 5 \sin(500\pi t) + 10 \cos(250\pi t)$
 - $y(t) = 10 \sin(500\pi t) \cdot \cos(250\pi t)$
- c) For the signal $x(t) = e^{-t} [u(t) - u(t-5)]$, sketch the following: 06
 $x(t)$, $x(5-2t)$ and $x(t) \cdot x(-t)$.
- d) The input- output relation of a continuous time system is 06

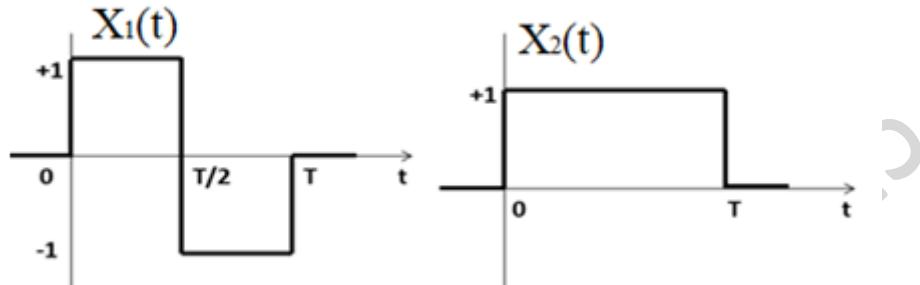
$$y(t) = x(t) + x(t-1) + x(t-2)$$

Determine whether the system is linear, time invariant and stable.

UNIT - II

- 2 a) The impulse response of a continuous-time LTI system is 06

$$h(t) = 3 u(t)$$


Verify whether the system is causal, memory less and stable. Justify your answers with relevant reasons.

- b) The impulse response of an RC circuit is defined as $h(t) = 2e^{-2t} u(t)$. 10
- Determine and sketch the step response, $s(t)$ for the system.
 - Compute response of the system for input: $x(t) = u(t) - u(t-3)$.

- c) What is Hilbert Transform? Briefly explain the applications of Hilbert transform. **04**

OR

- 3 a) Obtain the representation for the signals given in Fig Q-3 in terms of orthogonal functions. Assume $T = 0.4$ sec. **06**

Fig Q-3

- b) Briefly explain the following terms: **06**
- Auto Correlation
 - Cross correlation
 - Convolution integral.
- c) Two systems are connected in cascade. Let the impulse responses be **08**
 $h_1(t) = 2e^{-2t} u(t)$ and $h_2(t) = 5e^{-t} u(t)$. Obtain the overall impulse response of the cascaded system.

UNIT - III

- 4 a) Determine the Fourier transform of $x(t) = e^{-2t} u(t)$. **08**
 Compute and sketch the magnitude and phase spectrum.
- b) Using inverse Fourier transform, obtain the time domain signal for the following Fourier transform: **06**

$$X(j\omega) = \begin{cases} 1 & \text{for } 0 < |\omega| < B, \\ 0 & \text{for } |\omega| > B. \end{cases}$$

- c) Derive the canonical representation for band pass signals. **06**

OR

- 5 a) Obtain the Fourier transform for the signal $g(t)$ given in Fig Q-5. Determine and Sketch the spectrum. **08**

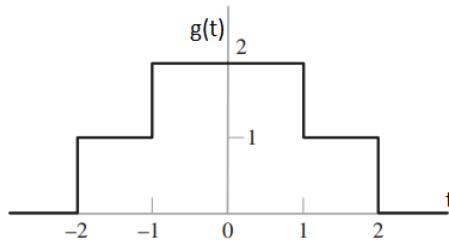


Fig Q-5

- b) Derive the Fourier series representation of the following periodic signals: **08**

$$x(t) = \cos(\pi t/2) + \sin(2\pi t/3)$$

 Also obtain the Fourier transform representation. Sketch the spectrum.
- c) Differentiate between Energy spectral density and Power spectral density. **04**

UNIT - IV

- 6 a) A continuous time system is defined by the differential equation: **12**

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = 2\frac{dx(t)}{dt} + x(t)$$

- (i) Using Laplace Transform, obtain the system transfer function.
 (ii) Sketch pole-zero plot and comment on the stability of the system.
 (iii) Obtain the impulse response of the system.
 (iv) Draw the block diagram representation for the system.

- b) A system has the transfer function **08**

$$H(s) = \frac{2}{s+3} + \frac{1}{s-2}$$

Find the impulse response assuming:

- (i) the system is stable and (ii) the system is causal.

Also verify whether the system can be both stable and causal.

UNIT - V

- 7 a) What are ideal filters? Draw the frequency response for an ideal high pass filter and explain. **04**
- b) Derive the transfer function of a Butterworth filter of the low pass type with cut-off frequency $\omega_c = 1$ rad/sec and filter order, $N = 3$. **08**
 Draw the pole-zero plot for the designed filter transfer function.
- c) Consider a low pass filter whose transfer function is **08**

$$H(s) = \frac{1}{s+1}$$

Find the transfer function for each of the following filters:

- (i) Low-pass filter with cut-off frequency $\omega_o = 10$ rad/sec
 (ii) High-pass filter with cut-off frequency $\omega_o = 10$ rad/sec
 (iii) Band pass filter with mid-band frequency $\omega_o = 20$ rad/sec and bandwidth, $B = 0.2$.
