

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

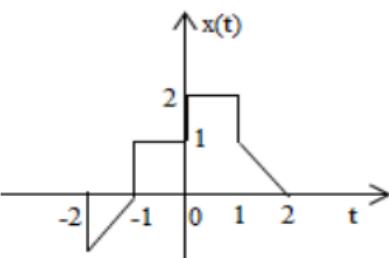
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

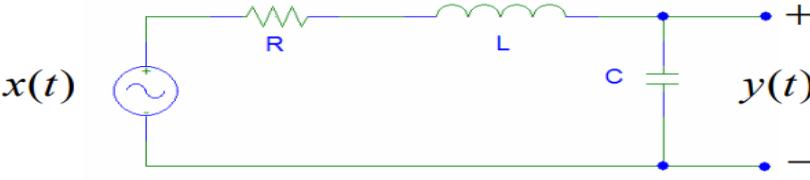
Semester: III

Branch: Electronics & Telecommunication Engineering


Duration: 3 hrs.

Course Code: 23ET3PCSSA

Max Marks: 100


Course: SIGNALS AND SYSTEMS: ANALOG

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Classify the signals with an example each.	CO1		10
	b)	A continuous time signal $x(t)$ is shown in fig (1b).	CO2	PO1	10
<p>fig (1b)</p> <p>sketch and label each of the following signal:</p> <p>i) $x(t-1)$ ii) $x(2-t)$ iii) $x(t)[\delta(t+3/2) - \delta(t-3/2)]$ iv) $x(2t+1)$</p>					
OR					
2	a)	List the various operations performed on independent and dependent variables with an example.	CO1	-	10
	b)	Justify whether the following system are linear or nonlinear, time invariant or not, causal or noncausal, stable or unstable. (i) $y(t) = t x(t)$ (ii) $y(t) = x(t) u(t)$.	CO2	PO2	10
UNIT - II					
3	a)	List the basic properties of convolution integral with example.	CO2	PO1	04
	b)	Consider two continuous signals $x(t) = e^{-3t}[u(t) - u(t-2)]$ and $h(t) = e^{-t}u(t)$;	CO2	PO1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		(i) Evaluate $y(t)$ using convolution integral (ii) Check $h(t)$ is causal or not.			
	c)	The impulse response of a continuous-time LTI system is given by: $h(t)=e^{-t}u(t+1)$ Analyze if the system is causal and explain its stability characteristics.	CO2	PO2	08
		OR			
4	a)	List the difference between auto correlation and Cross correlation.	CO2	PO1	04
	b)	Perform the convolution operation of the following signals $x_1(t)=e^{- t-2 }$ and $x_2(t)=e^{-2t}u(t+4)$ and plot the output	CO2	PO1	08
	c)	The input $x(t)$ and impulse response $h(t)$ of a continuous time LTI system as $x(t)=u(t)$ and $h(t)=e^{-at}u(t)$. Compute the output $y(t)$	CO2	PO2	08
		UNIT - III			
5	a)	Show how to compute the Fourier Transform of a periodic signal using its Fourier series coefficients.	CO3	PO1	05
	b)	Compute the Fourier series coefficients for the periodic square wave given by: $x(t) = \begin{cases} A, & 0 \leq t < T/2, \\ -A, & T/2 \leq t < T, \end{cases}$ where T is the period of the signal.	CO3	PO1	08
	c)	Verify the Parseval's theorem for the signal $x(t)=e^{-t}u(t)$.	CO3	PO2	07
		OR			
6	a)	Define the magnitude spectrum and phase spectrum of a signal. Explain their significance in analyzing signals.	CO3	PO1	05
	b)	Determine the magnitude and phase spectrum of the signal $x(t)=e^{-2 t }$	CO3	PO1	08
	c)	Find Power spectral density of unit step function.	CO3	PO2	07
		UNIT - IV			
7	a)	For the transfer function, $H(s) = \frac{1}{s^2+2s+5}$ plot the poles and zeros and comment on the damping and oscillatory nature of the system.	CO3	PO2	07

	b)	Derive the transfer function $H(s)$ of a system whose input-output relationship is governed by the differential equation: $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = 3x(t)$	CO3	PO1	05
	c)	For the transfer function, $H(s) = \frac{1}{s+2}$ determine its magnitude and phase response. Plot the frequency response.	CO3	PO2	08
		OR			
8	a)	Find Transfer function of 	CO3	PO2	07
	b)	Explain the concept of block diagram representation of systems with respect to direct form-I and direct form-II.	CO3	PO1	05
	c)	Solve the differential equation $\frac{dy(t)}{dt} + 3y(t) = 2x(t) \text{ for } x(t) = e^{-t}u(t)$ using the Laplace Transform.	CO3	PO2	08
		UNIT - V			
9	a)	Why the Butterworth filter referred to as a "maximally flat" filter? Provide a brief explanation.	CO4	PO1	04
	b)	Given the attenuation requirements for a Butterworth filter at $f_p=3$ kHz (passband) and $f_s=15$ kHz (stopband), with $A_p=1$ dB and $A_s=45$ dB, calculate the minimum order of the filter.	CO4	PO3	08
	c)	Design a first-order Butterworth high-pass filter with a cutoff frequency of 1 kHz. Specify the component values.	CO4	PO3	08
		OR			
10	a)	Explain practical implementation of first order Butterworth Low pass filter.	CO4	PO1	04
	b)	A low-pass Butterworth filter has the following specifications: <ul style="list-style-type: none"> Cutoff frequency: $f_c=2$ kHz 	CO4	PO3	08

		<ul style="list-style-type: none"> Passband ripple: $A_p=1$ dB, Stopband attenuation: $A_s=40$ dB at $f_s=16$ kHz Calculate the order of the filter and sketch the approximate magnitude response. 			
	c)	Design a first order Butterworth low-pass filter with a cutoff frequency of 2 kHz. Specify the component values.	CO4	PO3	08

REAPPEAR EXAMS 2024-25