

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## January / February 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: III**

**Branch: Electronics & Telecommunication Engineering**

**Duration: 3 hrs.**

**Course Code: 23ET3PCSSA**

**Max Marks: 100**

**Course: SIGNALS AND SYSTEMS: ANALOG**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| UNIT - I                                                                                                                                                                                       |    |                                                                                                                                                                                                                                                                           | CO  | PO  | Marks |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|
| Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice. | 1  | a) A signal is defined as follows :<br>$x(t) = \begin{cases} 1; & -1 \leq t \leq 0 \\ (t+1); & 0 \leq t \leq 1 \\ (-t+3); & 1 \leq t \leq 2 \\ 1; & 2 \leq t \leq 3 \\ 0; & \text{elsewhere} \end{cases}$<br>sketch (i) $x(t)$ (ii) $x(-\frac{1}{2}t+2)$ (iii) $x(-2t-3)$ | CO3 | PO2 | 10    |
|                                                                                                                                                                                                | b) | Determine whether the following signals are periodic or not periodic.<br>(i) $\cos t + \sin \sqrt{2}t$<br>(ii) $e^{-3t}u(t-2)$<br>(iii) $2u(t) + 2\sin 2t$<br>(iv) $u(t) - \frac{1}{2}$<br>(v) $\sin^2 t$                                                                 | CO3 | PO2 | 10    |
| <b>OR</b>                                                                                                                                                                                      |    |                                                                                                                                                                                                                                                                           |     |     |       |
| 2                                                                                                                                                                                              | a) | Prove the following with respect to convolution operation:<br>(i) $x(t) * \delta(t) = x(t)$<br>(ii) $x(t) * \delta(t - t_0) = x(t - t_0)$                                                                                                                                 | CO2 | PO1 | 10    |

|                   |    |                                                                                                                                                                                                                                                             |     |     |           |
|-------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|                   |    | (iii) $x(t) * u(t) = \int_{-\infty}^t x(\tau) d\tau$<br><br>(iv) $x(t) * u(t - t_0) = \int_{-\infty}^{t-t_0} x(\tau) d\tau$                                                                                                                                 |     |     |           |
|                   | b) | Determine whether following are energy or power signals.<br><br>(i) $x(t) = e^{-3t} u(t - 2)$<br><br>(ii) $x(t) = t u(t)$                                                                                                                                   | CO3 | PO2 | <b>06</b> |
|                   | c) | Evaluate the following integrals<br><br>(i) $\int_{-\infty}^{\infty} \delta(t + 3) e^{-t} dt$<br><br>(ii) $\int_{-\infty}^{\infty} (t - 3)^2 \delta(t - 3) dt = 0$                                                                                          | CO3 | PO2 | <b>04</b> |
| <b>UNIT - II</b>  |    |                                                                                                                                                                                                                                                             |     |     |           |
| 3                 | a) | If $x(t) = \begin{cases} 1; & 0 \leq t \leq 2 \\ 0; & \text{otherwise} \end{cases}$ and $h(t) = \begin{cases} 1; & 0 \leq t \leq 3 \\ 0; & \text{otherwise} \end{cases}$<br><br>Evaluate $x(t) * h(t)$ and plot the output                                  | CO3 | PO2 | <b>10</b> |
|                   | b) | An overall impulse response of a system is given by<br>$h(t) = h_1(t) * [h_5(t) + h_2(t) * \{h_3(t) + h_4(t)\}]$<br>(i) Draw block diagram of the system<br><br>(ii) Find $h(t)$ if $h_1(t) = h_2(t) = 5\delta(t)$ and<br>$h_3(t) = h_4(t) = h_5(t) = u(t)$ | CO3 | PO2 | <b>10</b> |
| <b>OR</b>         |    |                                                                                                                                                                                                                                                             |     |     |           |
| 4                 | a) | Explain autocorrelation and cross correlation with relevant equations. Derive expression for orthogonality of two signals.                                                                                                                                  | CO2 | PO1 | <b>10</b> |
|                   | b) | If $x(t) = u(t + 1) - u(t - 1)$ and $h(t) = 2x(t)$<br><br>Evaluate $x(t) * h(t)$ plot input and output signals.                                                                                                                                             | CO2 | PO1 | <b>10</b> |
| <b>UNIT - III</b> |    |                                                                                                                                                                                                                                                             |     |     |           |
| 5                 | a) | A signal is given by $x(t) = 2 + \cos(\frac{2\pi}{3}t) + 4 \sin(\frac{5\pi}{3}t)$ .<br>Determine fundamental frequency and Fourier series coefficients.                                                                                                     | CO3 | PO2 | <b>10</b> |

|   |    |                                                                                                                                                                                                                                          |     |     |    |
|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|   | b) | Find the Fourier transform of the following<br>(i) $\text{sgn}(t)$<br>(ii) $u(t)$                                                                                                                                                        | CO3 | PO2 | 10 |
|   |    | <b>OR</b>                                                                                                                                                                                                                                |     |     |    |
| 6 | a) | State and prove the following properties with respect to Fourier transform<br>(i) Duality<br>(ii) Time scaling<br>(iii) Differentiation in frequency<br>(iv) Frequency shifting                                                          | CO2 | PO1 | 10 |
|   | b) | A signal is given by $x(t) = \cos(3\pi t) + \sin(2\pi t)$ . Determine Fourier series coefficients. Draw the magnitude and phase spectrum.                                                                                                | CO3 | PO2 | 10 |
|   |    | <b>UNIT - IV</b>                                                                                                                                                                                                                         |     |     |    |
| 7 | a) | A system is given by following equation<br>$\frac{d^2}{dt^2} y(t) + 6 \frac{d}{dt} y(t) + 8y(t) = 2x(t)$<br>(i) Find the impulse response of the system<br>(ii) Find the output of the system if input is given by $x(t) = te^{-2t}u(t)$ | CO3 | PO2 | 10 |
|   | b) | Draw RC first order lowpass filter and find the following<br>(i) Transfer function<br>(ii) Impulse response<br>(iii) Frequency response<br>(iv) Pole zero plot                                                                           |     |     | 10 |
|   |    | <b>OR</b>                                                                                                                                                                                                                                |     |     |    |
| 8 | a) | Draw the Direct form I and Direct form II structure for the following system<br>$\frac{d^3}{dt^3} y(t) + 2 \frac{d}{dt} y(t) + 3y(t) = x(t) + 3 \frac{d}{dt} x(t)$                                                                       | CO2 | PO1 | 10 |
|   | b) | A system is given by<br>$\frac{d^2}{dt^2} y(t) + 4 \frac{d}{dt} y(t) + 3y(t) = 4x(t) + 2 \frac{d}{dt} x(t)$ . Using Fourier transform find the output $y(t)$ if $x(t) = e^{-2t}u(t)$                                                     | CO2 | PO1 | 10 |

|           |    | UNIT - V |                                                                                                                                                                                                    |     |     |    |
|-----------|----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|           | 9  | a)       | Design a Butterworth filter for the following specifications<br>$0.8 \leq  H(s)  \leq 1$ ; for $0 \leq F \leq 1000\text{Hz}$<br>$ H(s)  \leq 0.2$ ; for $F \geq 5000\text{Hz}$                     | CO4 | PO3 | 10 |
|           |    | b)       | Describe analog to analog frequency transformations using relevant expressions and graphs.                                                                                                         | CO1 | -   | 10 |
| <b>OR</b> |    |          |                                                                                                                                                                                                    |     |     |    |
|           | 10 | a)       | Design a Butterworth filter with maximally flat response in passband and an acceptable attenuation of -2dB at 20 rad/sec. The attenuation in stop band should be more than 10dB beyond 30 rad/sec. | CO4 | PO3 | 10 |
|           |    | b)       | List the characteristics of Butterworth filter                                                                                                                                                     | CO1 | -   | 05 |
|           |    | c)       | Give practical realization of first order Butterworth Low pass filter.                                                                                                                             | CO2 | PO1 | 05 |

\*\*\*\*\*