

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

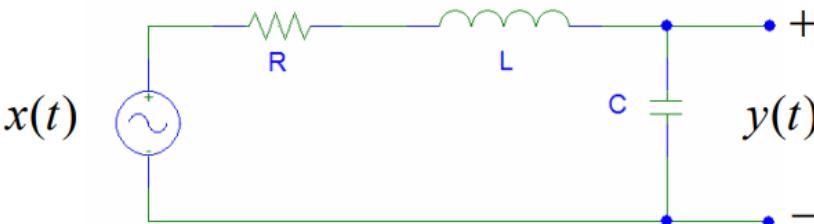
Programme: B.E.

Branch: Electronics and Telecommunication Engineering

Course Code: 23ET3PCSSA

Course: Signals and Systems: Analog

Semester: III


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define the following with examples. (i) Even and odd Signals (ii) Energy and power Signals	CO1	-	04
	b)	A continuous-time signal $x(t)$ is shown in fig. sketch and label carefully each of the following signals: i) $x(t-1)$ ii) $x(2-t)$ iii) $x(t)[\delta(t+3/2) - \delta(t-3/2)]$ iv) $x(2t+1)$	CO2	PO1	08
	c)	Justify whether the following system are linear or nonlinear, time invariant or not, causal or noncausal, stable or unstable. (i) $y(t) = tx(t)$ (ii) $y(t) = x(t) u(t)$.	CO3	PO2	08
UNIT - II					
2	a)	List the basic properties of continuous integral with example.	CO2	PO1	04
	b)	Consider two continuous signals $x(t) = e^{-3t} [u(t) - u(t-2)]$ and $h(t) = e^{-t} u(t)$; (i) Evaluate $y(t)$ using convolution integral (ii) Check for causality of $h(t)$.	CO2	PO1	08
	c)	The impulse response of a continuous time LTI system is given by $h(t) = e^{-2t} u(t-1)$. Is system is causal and stable?. Comment on your answer.	CO2	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR								
3	a)	List the difference between auto-correlation and cross-correlation.	CO2	PO1	04			
	b)	Perform the convolution operation of the following signals $x1(t)=e^{- t-2 }$ and $x2(t)=e^{-2t}u(t+4)$	CO2	PO1	08			
	c)	The input $x(t)$ and impulse response $h(t)$ of a continuous-time LTI system are defined as $x(t)=u(t)$ and $h(t)=e^{-at}u(t)$. Compute the output $y(t)$.	CO2	PO2	08			
UNIT - III								
4	a)	List the steps involved in deriving the Fourier Transform from Fourier series.	CO1	-	05			
	b)	(i) State and prove Parseval's Theorem with reference to continuous time signal. (ii) Find the Fourier Transform of the following signal and draw its frequency spectrum $x(t)=\begin{cases} 10 & -5 \leq t \leq 5 \\ 0 & \text{otherwise} \end{cases}$	CO3	PO2	10			
	c)	Using convolution property of Fourier Transform, prove that output of the LTI system for sinusoidal input is sinusoidal.	CO3	PO2	05			
OR								
5	a)	Write about energy spectral density and power spectral density.	CO1	-	05			
	b)	Obtain the Fourier transforms and spectrums of following signals (i) $x(t)=\cos(\omega_0 t)$ (ii) $x(t)=e^{-a t }$	CO3	PO2	10			
	c)	Find Power spectral density of unit step function.	CO3	PO2	05			
UNIT - IV								
6	a)	Draw pole zero plot for the Transfer function. $H(s) = \frac{2s^2 + 12s + 20}{s^3 + 6s^2 + 10s + 8}$ What will happen if the pole moves closer to the $j\omega$ axis ?	CO3	PO2	05			
	b)	Find Transfer function of				CO3	PO2	07
	c)	Determine the zero-input response for the system described by the differential equation: $d^2y(t)/dt^2 + 3 dy(t)/dt + 2y(t) = x(t) + dx(t)/dt; \quad y(0) = 0; \quad y'(0) = 1$	CO3	PO2	08			

UNIT – V					
7	a)	List any two properties of Butterworth filter.	<i>CO4</i>	<i>PO1</i>	04
	b)	Explain practical implementation of first order Butterworth Low pass filter.	<i>CO4</i>	<i>PO2</i>	08
	c)	Obtain the order of the Butterworth filter that has an attenuation of 1dB at 2 KHz and at least 40 dB at 16 KHz.	<i>CO4</i>	<i>PO3</i>	08

B.M.S.C.E. - ODD SEM 2023-24