

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET4PCCS1

Max Marks: 100

Course: COMMUNICATION SYSTEMS 1

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain ring modulator to generate DSBSC wave.			<i>CO1</i>		06
		b)	Show that a SQUARE LAW device can be used for the detection of AM wave			<i>CO2</i>	<i>PO1</i>	08
		c)	A carrier wave $c(t)=10\sin(2\pi\times 500\times 10^3 t)$ is amplitude modulated by an audio wave $m(t) = 0.5\sin 3(2\pi\times 500t) + 0.4 \sin 5(2\pi\times 500t)$. Determine upper and lower sidebands and sketch the complete spectrum of the modulated wave. Estimate power in sidebands.			<i>CO3</i>	<i>PO2</i>	06
	OR							
	2	a)	Describe the generation of AM using switching modulator with time domain equation and spectrum			<i>CO2</i>	<i>PO1</i>	10
		b)	Show that how DSBSC signal is demodulated using coherent detector with supporting spectrum			<i>CO2</i>	<i>PO1</i>	10
	UNIT - II							
	3	a)	Describe frequency division multiplexing with appropriate block diagram.			<i>CO1</i>		06
		b)	Derive a time domain expression for SSB modulated wave for which upper side band is retained.			<i>CO2</i>	<i>PO1</i>	08
		c)	Prove that the signal $s(t) = \sum_{i=1}^N [\cos(2\pi f_c t) \cos(2\pi f_i t + \phi_i) - \sin(2\pi f_c t) \sin(2\pi f_i t + \phi_i)]$ i) Is an SSB signal ($f_c >> f_N$), Identify the sideband and plot the spectrum. ii) obtain an expression for missing sideband and plot the spectrum.			<i>CO3</i>	<i>PO2</i>	06

		iii) Obtain an expression for the total DSBSC signal and plot the spectrum.			
		OR			
4	a)	Show that how a two stage SSB modulator increases the guard band of SSB modulated signal with relevant block diagram and spectrum.	CO2	PO1	10
	b)	What is frequency translation? With appropriate derivation and spectrum explain upward frequency translation.	CO2	PO1	10
		UNIT - III			
5	a)	Describe the detection of FM using frequency discrimination method	CO1		08
	b)	Show that FM signals has infinite sidebands with appropriate derivation.	CO2	PO1	12
		OR			
6	a)	With block diagram explain the generation of wideband frequency modulated waves using indirect method.	CO1		08
	b)	With relevant equations describe detection of FM using linear model of PLL.	CO2	PO1	12
		UNIT - IV			
7	a)	With block diagram describe the generation and detection of PCM wave	CO1		06
	b)	State and prove sampling theorem for low pass signals.	CO2	PO1	08
	c)	The signal $g(t)=20 \cos(50\pi t) \cos(250\pi t)$ is sampled at the rate of 250 samples per second. i)Determine the spectrum of the resulting sampled signal. ii)Specify the cutoff frequency of the ideal reconstruction filter so as to recover $g(t)$ from its sampled version iii)What is the Nyquist rate for $g(t)$?	CO2	PO1	06
		OR			
8	a)	Derive the SNR of Pulse code modulation for sinusoidal signal as input and show that it is equal to $1.76+6n$.	CO2	PO1	10
	b)	State and prove sampling theorem for band pass signals.	CO2	PO1	10
		UNIT - V			
9	a)	What is ISI? Derive an expression for Nyquist's pulse shaping criteria for distortionless baseband binary data transmission.	CO2	PO1	10
	b)	With an appropriate block diagram describe the process of Adaptive Equalization.	CO1		10
		OR			
10	a)	Assume 8 bit binary sequence with an alternating 1s and 0s. Draw the waveforms for this sequence, using the following signaling format. i)Unipolar NRZ and RZ signaling ii)Polar NRZ and RZ signaling	CO2	PO1	08

		iii)Bipolar NRZ signaling iv)AMI NRZ signaling			
	b)	i)Derive the equation for overall transfer function and impulse response of duo binary encoder with precoder. ii)For the input binary sequence 11010101 Obtain the duobinary coder and decoder output with precoder.	CO2	PO1	12

B.M.S.C.E. - ODD SEM 2024-25