

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET4PCHDL

Max Marks: 100

Course: Verilog HDL

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Write the need of HDL? Explain the history of Verilog.	CO1	PO1	06
		b)	Describe the types or levels of Verilog HDL descriptions.	CO1	PO1	06
		c)	Explain the top-down and bottom-up design methodologies with block diagram.	CO1	PO1	08
OR						
	2	a)	Draw the typical design flow chart for designing VLSI IC circuits and write the importance of HDLs.	CO1	PO1	06
		b)	Discuss the trends in HDL.	CO1	PO1	06
		c)	Write the Design and stimulus block of 4-bit ripple carry counter with Verilog HDL.	CO2	PO2	08
UNIT - II						
	3	a)	Define a module and explain the components of Verilog module.	CO1	PO1	06
		b)	Illustrate the different lexical conventions that are used in Verilog HDL.	CO1	PO1	06
		c)	Discuss the compiler directives that are used in Verilog.	CO1	PO1	08
OR						
	4	a)	Discuss the different Data Types used in Verilog with examples.	CO1	PO1	06
		b)	Describe the system tasks that are used in Verilog.	CO1	PO1	06
		c)	Write the Verilog module of full adder using half adder. Illustrate the connection of ports by order and name with respect to full adder using half adder.	CO2	PO2	08
UNIT - III						
	5	a)	Explain and/or & buf/not built in primitives with example.	CO2	PO2	06

	b)	Discuss the Different types of operators used in verilog with example.	CO2	PO2	06
	c)	Define Instance. Write the Gate level modeling for 4-to-1 line Multiplexer with stimulus block.	CO2	PO2	08
		OR			
6	a)	Illustrate rise, fall and turn-off delays with example.	CO2	PO2	06
	b)	Write the dataflow Verilog module for 4 to 1 line Multiplexer using ternary operator.	CO2	PO2	06
	c)	Write the dataflow Verilog module for 4-bit full adder with carry look ahead adder.	CO2	PO3	08
		UNIT - IV			
7	a)	Write the Verilog module for 4 to 2 line Priority Encoder, give the highest priority to MSB bit.	CO3	PO2	06
	b)	Compare initial with always block. Illustrate with example.	CO3	PO2	06
	c)	Discuss Regular delay control and Intra-assignment delay control statements with example.	CO3	PO3	08
		OR			
8	a)	Write the Behavioral Verilog module for 2 to 1 line multiplexer and verify the design with test bench module.	CO3	PO3	06
	b)	Compare blocking with non-blocking assignment statements. Illustrate with example.	CO3	PO2	06
	c)	Explain the loop statements, Illustrate with example.	CO3	PO2	08
		UNIT - V			
9	a)	Synthesize the following code: if(s) y=a; else y=b. Derive the RTL diagram.	CO4	PO5	06
	b)	Discuss the impact of logic synthesis.	CO4	PO5	06
	c)	Describe the mapping of case statement with and without storage to RTL schematic by taking suitable examples.	CO4	PO9	08
		OR			
10	a)	Define synthesis and explain synthesis design flow from RTL to gates.	CO4	PO5	06
	b)	Describe the modeling tips for logic synthesis with examples.	CO4	PO5	06
	c)	Write the Verilog module to synthesize the function to calculate $Y=2*X+3$, where X is 0 to 4. Derive the RTL Diagram.	CO4	PO9	08
