

# B.M.S. College of Engineering, Bengaluru-560019

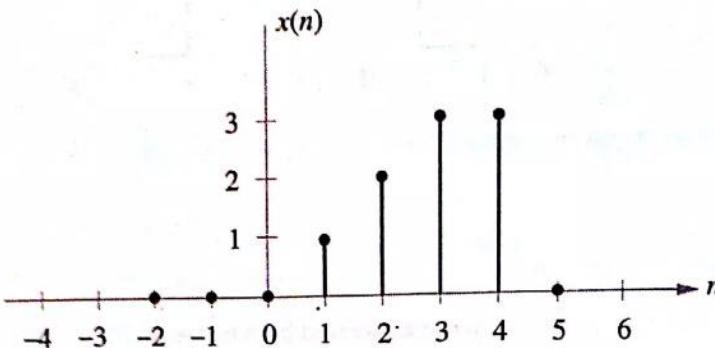
Autonomous Institute Affiliated to VTU

## September / October 2023 Semester End Main Examinations

**Programme: B.E.**

**Semester: IV**

**Branch: Electronics and Telecommunication Engineering**


**Duration: 3 hrs.**

**Course Code: 22ET4PCSSD**

**Max Marks: 100**

**Course: Signal and Systems: Digital**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

|                                                                                                                                                                                                       |   |    | UNIT - I                                                                                                                                                                    | CO  | PO  | Marks     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
| <b>Important Note:</b> Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice. | 1 | a) | Classify the signals with an example each                                                                                                                                   | CO1 | PO1 | <b>06</b> |
|                                                                                                                                                                                                       |   | b) | State and prove sampling theorem for low pass signal                                                                                                                        | CO1 | PO1 | <b>08</b> |
|                                                                                                                                                                                                       |   | c) | For the signal shown below<br><br><br><br>Sketch (i) $x(n-2)$ (ii) $x(2n)$ (iii) $x(-n)$ | CO1 | PO1 | <b>06</b> |
|                                                                                                                                                                                                       |   |    | <b>UNIT - II</b>                                                                                                                                                            |     |     |           |
|                                                                                                                                                                                                       | 2 | a) | An impulse response of an LTI system is given by<br>$h(n) = (0.5)^n u(n)$<br>Test the system for memory, causality, and stability                                           | CO2 | PO2 | <b>06</b> |
|                                                                                                                                                                                                       |   | b) | Convolute the following signals<br>$x_1(n) = (\alpha)^n u(n)$ and $x_2(n) = (\beta)^n u(n)$<br>i) $\alpha = \beta, n \geq 0$<br>ii) $\alpha \neq \beta, n \geq 0$           | CO2 | PO2 | <b>10</b> |
|                                                                                                                                                                                                       |   | c) | Find the circular convolution of $x(n) = \{1,2,1\}$ and $y(n) = \{1,2,3,4\}$                                                                                                | CO2 | PO2 | <b>04</b> |
|                                                                                                                                                                                                       |   |    | <b>UNIT - III</b>                                                                                                                                                           |     |     |           |
|                                                                                                                                                                                                       | 3 | a) | Find the output of a filter whose impulse response is $h(n) = \{1,1,1\}$ and the input signal is $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$ using overlap save method.      | CO2 | PO2 | <b>08</b> |

|   |    |                                                                                                                                                                                                                                                               |     |     |           |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   | b) | Find the 8-point DFT of the following sequence<br>$x(n) = \{0.707, 1, 0.707, 0, -0.707, -1, -0.707, 0\}$                                                                                                                                                      | CO2 | PO2 | <b>08</b> |
|   | c) | Find the IDFT of the sequence $X(k) = \{0, 2, 0, 2\}$ using DIT-IFFT algorithm.                                                                                                                                                                               | CO2 | PO2 | <b>04</b> |
|   |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                              |     |     |           |
| 4 | a) | Design a lowpass digital filter that will have a $-3\text{dB}$ cutoff at $30\pi$ rad/sec and an attenuation of $50\text{dB}$ at $45\pi$ rad/sec. The filter is required to have a linear phase and the system will use a sampling rate of 100 samples/second. | CO3 | PO3 | <b>10</b> |
|   | b) | Describe the procedure of designing FIR filters using frequency sampling method.                                                                                                                                                                              | CO3 | PO3 | <b>06</b> |
|   | c) | Find the impulse response for the following system $y(n) - 0.5y(n-1) = x(n)$ . Also draw the pole zero plot                                                                                                                                                   | CO2 | PO2 | <b>04</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                     |     |     |           |
| 5 | a) | Derive the expression for system function if the unit sample response $h(n)$ is obtained using frequency sampling technique.                                                                                                                                  | CO3 | PO3 | <b>10</b> |
|   | b) | Draw the linear phase structure for the following impulse response $h(n) = \{1, 0.5, -0.25, 0.5, 1\}$                                                                                                                                                         | CO2 | PO2 | <b>06</b> |
|   | c) | With relevant equations explain the properties of FIR filters                                                                                                                                                                                                 | CO2 | PO2 | <b>04</b> |
|   |    | <b>UNIT - V</b>                                                                                                                                                                                                                                               |     |     |           |
| 6 | a) | Design a second order lowpass digital butter worth filter with cut off frequency of 1kHz and sampling frequency of 10,000 samples/sec by bilinear transformation.                                                                                             | CO3 | PO3 | <b>10</b> |
|   | b) | Draw the direct form I structure for the filter $y(n) - 0.75y(n-1) + 0.125y(n-2) = x(n) + 0.5x(n-1)$                                                                                                                                                          | CO2 | PO2 | <b>04</b> |
|   | c) | Describe the wavelet transform with respect to denoising applications                                                                                                                                                                                         | CO2 | PO2 | <b>06</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                     |     |     |           |
| 7 | a) | Determine the order and poles of a Butterworth filter that has 3 dB bandwidth of 1000 Hz and an attenuation of 20 dB at 2000 Hz. Find the system function $H(z)$ by bilinear transformation using $T=1/10,000$                                                | CO3 | PO3 | <b>10</b> |
|   | b) | Draw the direct form II structure for the filter $y(n) - 0.75y(n-1) + 0.125y(n-2) = x(n) + 0.5x(n-1)$                                                                                                                                                         | CO2 | PO2 | <b>04</b> |
|   | c) | Explain in detail image compression techniques                                                                                                                                                                                                                | CO2 | PO2 | <b>06</b> |

\*\*\*\*\*