

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET4PCSSD

Max Marks: 100

Course: Signals and Systems: Digital

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Classify the systems and give one example each	CO1	-	10
	b)	(i) A signal is given by $x(n) = \sin(2n)$. Determine whether the signal is periodic or non-periodic. (ii) A signal is given by $x(n) = \begin{cases} 1; & 0 \leq n \leq 5 \\ 0; & \text{otherwise} \end{cases}$. Determine energy or power. (iii) A system is defined by $y(n) = x(n) + x(n-1)$. Determine whether it is causal or noncausal	CO2	PO1	10
OR					
2	a)	Classify the signals and give one example each	CO1	-	10
	b)	A signal is defined by $y(n)=x(n).u(n)$. Test the system for the following cases (i) Linearity (ii) Time invariance (iii) Stability (iv) Memory (v) Causality	CO2	PO1	10
UNIT - II					
3	a)	Prove that $x(n) * h(n) = h(n) * x(n)$ for convolution sum. Where $x(n)$ is the input signal and $h(n)$ is the impulse response of the system.	CO1	-	10
	b)	Find the circular convolution of $x_1(n)=\{1,2,1\}$ and $x_2(n)=\{1,2,3,4\}$ using (i) Matrix method (ii) Concentric circle method	CO2	PO1	10
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	convolute the following signals $x_1(n) = \alpha^n u(n)$ $x_2(n) = \beta^n u(n)$	CO2	PO1	10
		b)	Find the linear convolution of $x_1(n)=\{1,2,1,2,1,2\}$ and $x_2(n)=\{1,2,1\}$ using (i) Tabular method (ii) Circular convolution	CO2	PO1	10
			UNIT - III			
5	a)		Find the DFT of $x(n)=\{1,2,3,4,5,6,7,8\}$. Also sketch the magnitude and phase spectrum	CO2	PO1	10
	b)		State and prove following properties of DFT (i) convolution property in time (ii) Parsevals theorem	CO1	-	10
			OR			
6	a)		Find the DFT of $x(n)=\{8,7,6,5,4,3,2,1\}$. Also sketch the magnitude and phase spectrum			10
	b)		State and prove following properties of DFT (i) convolution property in frequency (ii) Time shift property	CO1	-	10
			UNIT - IV			
7	a)		Find the relation between DTFT and Z transform	CO1	-	05
	b)		Design a low pass FIR digital filter that will have a -3dB cutoff at 30rad/sec and an attenuation of 50dB at 45π rad/sec. The filter is required to have a linear phase and the system will use a sampling rate of 100 samples/second.	CO4	PO3	10
	c)		List the features of FIR filters			05
			OR			
8	a)		Describe the procedure of designing FIR filters using frequency sampling method. Also draw the frequency sampling structure	CO1	-	10
	b)		Find the impulse response for the following system $y(n)-0.5y(n-1)=x(n)$. Also draw the pole zero plot	CO2	PO1	10
			UNIT - V			
9	a)		Draw the direct form I and direct form II structures for the filter $y(n)-0.75y(n-1)+0.125y(n-2)=x(n)+0.5x(n-1)$. Give necessary equations governing the structures.	CO2	PO1	08
	b)		Write a note on image compression technique	CO1	-	06
	c)		Describe wavelet transforms with necessary equations. Also give its applications in signal processing	CO1	-	06
			OR			

	10	a)	Design a second order low pass digital butter worth filter with cut off frequency of 1kHz and sampling frequency of 10,000 samples /sec by bilinear transformation.	CO3	PO3	10
		b)	Describe the procedure of designing IIR filters using (i) Bilinear transformation (ii) Impulse invariant method	CO1	-	10

B.M.S.C.E. - ODD SEM 2024-25