

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET4PCSSD

Max Marks: 100

Course: Signals and Systems : Digital

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>A discrete signal $x[n]$ is shown in the figure Fig 1a. Sketch each of the following signals i) $x[n-2]$ ii) $x[2n]$ iii) $x[-n]$ iv) $x[-n+2]$</p> <p style="text-align: center;">Fig 1a</p>	<i>CO2</i>	<i>PO2</i>	10
	b)	<p>Compute $y[n] = x[n]*h[n]$, where $x[n] = \alpha^n u[n]$, $h[n] = \alpha^{-n} u[-n]$, $0 < \alpha < 1$</p>	<i>CO2</i>	<i>PO2</i>	10
	OR				
2	a)	<p>Classify the discrete time signals and systems with an example each</p>	<i>CO1</i>	-	10
	b)	<p>Consider the sinusoidal signal $x(t) = \cos 15t$. Find the fundamental period of $x[n] = x[nT_s]$, if $T_s = 0.1\pi$ seconds.</p>	<i>CO2</i>	<i>PO2</i>	10
UNIT - II					
3	a)	<p>Write a difference equation for the figure Fig 2a to relate the output $y[n]$ and the input $x[n]$.</p> <p style="text-align: center;">Fig 2a</p>	<i>CO2</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Explain auto-correlation with relevant equations and an example. Also plot the result for the example considered	CO2	PO1	10
		OR			
4	a)	Consider two sequences $x[n] = \cos(\pi n/2)$ and $h[n] = (1/2)^n$ where $n = 0, 1, 2, 3$. Calculate $y[n]$ by finding the circular convolution between $x[n]$ and $y[n]$.	CO2	PO2	10
	b)	Explain cross-correlation with relevant equations and an example. Also plot the result for the example considered	CO2	PO2	10
		UNIT - III			
5	a)	Assume that a complex multiplication takes $1\mu\text{s}$, how much time is required to compute <ul style="list-style-type: none"> i) 1024-point DFT directly ii) If FFT is used iii) For 4096-point DFT using direct method and FFT method 	CO3	PO2	10
	b)	With relevant equations and figures explain overlap-save method of evaluating DFT	CO2	PO1	10
		OR			
6	a)	Let $x(n)$ be a sequence of length N with $x(n) = -x(n + N/2)$ $n = 0, 1, \dots, N/2-1$, where N is an even integer. Show that the N -point DFT has only odd harmonics, that is $X(k) = 0$, k even	CO3	PO2	10
	b)	With relevant equations and figures explain overlap-add method of evaluating DFT	CO2	PO1	10
		UNIT - IV			
7	a)	Design a lowpass filter using rectangular window of length $M = 11$, given $\omega_c = \pi/2$ rad/s. Find the values of $h(n)$.	CO2	PO2	12
	b)	Consider a system described by the difference equation $y(n) = y(n-1) - y(n-2) + 0.5x(n) + 0.5x(n-1)$. Find the response of the system to the input $x(n) = (0.5)^n u(n)$. The initial conditions are given as $y(-1) = 0.75$ and $y(-2) = 0.25$.	CO2	PO2	08
		OR			
8	a)	Consider a filter with a system function $H(z) = A \frac{1+z^{-4}}{1+a^4 z^{-4}}$, where $0 < a < 1$ <ul style="list-style-type: none"> i) Draw pole-zero diagram for $H(z)$. ii) Find the value of A so that the peak gain of the filter is 2. 	CO2	PO2	06
	b)	The z-transform of a sequence $x(n)$ is given as $X(Z) = \frac{z + 2z^{-2} + z^{-3}}{1 - 3z^{-4} + z^{-5}}$ If the region of convergence includes the unit circle, find the DTFT of $x(n)$ at $\omega = \pi$.	CO2	PO1	06
	c)	Design a 9-tap lowpass FIR filter with a cutoff frequency of 0.25π using frequency sampling method.	CO2	PO2	08

UNIT - V					
9	a)	With relevant equations and figures explain the design of IIR Butterworth Filters using Impulse Invariant method	CO2	PO1	10
	b)	Explain Haar wavelet transform in detail with an example.	CO2	PO1	10
OR					
10	a)	Design a first-order digital low-pass filter with a 3-dB cutoff frequency of $\omega_c = 0.2\pi$ by applying the bilinear transformation to the analog Butterworth filter	CO3	PO2	10
	b)	Find the Direct form I and Direct Form II representation of the filter with the transfer function $H(z) = \frac{3 + 3.6z^{-1} + 0.6z^{-2}}{1 + 0.2z^{-1} - 0.2z^{-2}}$	CO3	PO2	10

B.M.S.C.E. - EVEN SEM 2024-25