

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

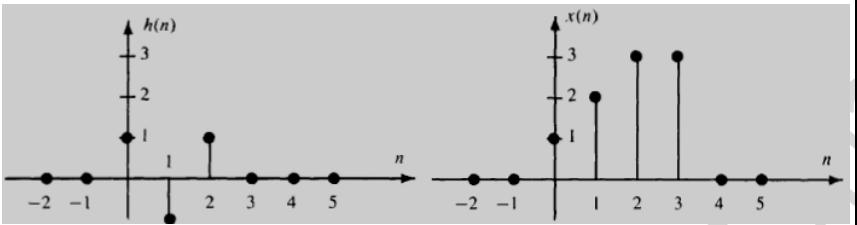
Programme: B.E.

Semester: IV

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET4PCSSD


Max Marks: 100

Course: Signal and Systems: Digital

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Determine whether the given system in Fig 1a is Linear</p>	CO2	PO1	06
	b)	<p>For the system shown in Fig 1b determine whether the system is memoryless, causal, linear, time-invariant and stable</p>	CO2	PO1	07
	c)	<p>Consider the discrete time sequence $x(n) = \cos\left(\frac{n\pi}{8}\right)$ Find two different continuous-time signals that would produce this sequence when sampled at a frequency of $f_s = 10$ Hz.</p>	CO2	PO1	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
2	a)	<p>Find the convolution of the given sequences</p> $x(n) = 0.5n[u(n) - u(n - 6)]$ $h(n) = 2 \sin\left(\frac{n\pi}{2}\right)[u(n + 3) - u(n - 4)]$	CO2	PO1	10
	b)	<p>Find the 4 point circular convolution of the given sequence in Fig 2b</p> <p style="text-align: center;">Fig 2b</p>	CO3	PO2	10
UNIT - III					
3	a)	<p>Compute N-point DFT of</p> <p>(i) $x_1(n) = \alpha^n$</p> <p>(ii) $x_2(n) = u(n) - u(n-n_0)$, where $0 < n_0 < N$.</p>	CO2	PO1	10
	b)	Determine how a $2N$ -point DFT of a real-valued sequence may be computed using an N -point FFT algorithm	CO2	PO1	10
UNIT - IV					
4	a)	Consider a discrete-time system whose input $x[n]$ and output $y[n]$ are related by $y[n] - ay[n-1] = x[n]$. Find the output $y[n]$ when $x[n] = K\delta[n]$ and $y[-1] = \alpha$	CO2	PO1	10
	b)	Obtain the system transfer function for the equation given	CO3	PO2	05
		$y[n] = 1.5y[n - 1] - 0.5y[n - 2] + 0.5x[n]$			
	c)	For the function shown find and plot poles and zeros	CO3	PO2	05
		$H(z) = \frac{(z - j)(z + j)}{\left(z - \left(\frac{1}{2} - \frac{1}{2j}\right)\right) \left(z - \left(\frac{1}{2} + \frac{1}{2j}\right)\right)}$			
OR					
5	a)	Design a lowpass filter using rectangular window of length $M = 11$, given $\omega_c = \pi/2$ rad/s. Find the values of $h(n)$	CO3	PO2	12
	b)	Derive expressions to design FIR filter using frequency sampling method	CO2	PO1	08
UNIT - V					
6	a)	Derive equations for filter design using Bilinear Transform	CO2	PO1	08

	b)	<p>Design a digital filter equivalent of a 2nd order Butterworth low-pass filter with a cut-off frequency $f_c = 100$ Hz and a sampling frequency $f_s = 1000$ samples/sec. Derive the finite difference equation and draw the realization structure of the filter.</p> <p>Given $H(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$</p>	CO3	PO2	12
		OR			
7	a)	Given the original image as 9, 7, 3, 5, 6, 10, 2, 6, find wavelet transformed image using Haar Transform	CO2	PO1	10
	b)	With relevant equations derive and demonstrate Direct Form 1 and 2 realizations of IIR filter	CO2	PO1	10
