

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET4PCSSD

Max Marks: 100

Course: Signals and Systems :Digital

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
			1	a)	Given the signal $x(n) = n + (-1)^n$. Find its even and odd components			
			b) What is a gold sequence? Give an example on generation of gold sequence			CO1	-	06
			c) Determine whether the following signals are periodic or not periodic. Hence find the fundamental time period (i) $x(n) = \cos\left(\frac{2\pi}{3}n\right)$ (ii) $x(n) = e^{j\left(\frac{\pi}{4}\right)n}$			CO2	PO1	08
OR								
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.			2 a) A system is defined as $y(n) = \sum_{k=n_0}^n x(k)$. Apply necessary equations and test the system for the following. (i) linearity (ii) static/dynamic (iii) causality (iv) time invariance (v) stability			CO4	PO3	10
			b) What is PRBS? Give an example on generation of PRBS			CO1	-	06
			c) Find the energy of the signal $x(n) = \{1, 2, 3, 4\}$			CO2	PO1	04
			UNIT - II					
			3 a) Define Autocorrelation. List its properties			CO1	-	06

	b)	Find the output of a LTI system, whose impulse response is $h(n)=\{1,1,1\}$ and the input signal is $x(n)=\{3,-1,0,1,3,2,0,1,2,1\}$ using overlap save method.	CO2	PO1	10
	c)	Find the impulse response of the difference equation given by $y(n) - \beta y(n-1) = x(n)$	CO2	PO1	04
OR					
4	a)	Define Cross correlation. List its properties	CO1	-	06
	b)	Find the output of a LTI system, whose impulse response is $h(n)=\{1,1,1\}$ and the input signal is $x(n)=\{3,-1,0,1,3,2,0,1,2,1\}$ using overlap add method.	CO2	PO1	10
	c)	Find the circular convolution of $x(n)=\{1,2,1\}$ and $y(n)=\{1,2,3,4\}$ using matrix method.	CO2	PO1	04
UNIT - III					
5	a)	Describe the process of up sampling with a block diagram	CO1	-	04
	b)	Find the 8 point DFT of $x(n)=\{0.707, 1, 0.707, 0, -0.707, -1, -0.707, 0\}$. Draw its magnitude and phase spectrum	CO2	PO1	10
	c)	State and prove time shift property of DFT			06
OR					
6	a)	Describe the process of down sampling with a block diagram	CO1	-	04
	b)	Find the 4point DFT of $x(n)=\{1,2,0,4\}$ using (i)DIT-FFT Algorithm (ii) DIF-FFT Algorithm	CO2	PO1	10
	c)	State and prove frequency shift property of DFT	CO1	-	06
UNIT - IV					
7	a)	Define Power spectral density (PSD). List the key characteristics of PSD.	CO1	-	06
	b)	Design a low pass digital filter that will have a -3dB cutoff at 30π rad/sec and an attenuation of 50dB at 45π rad/sec. The filter is required to have a linear phase and the system will use a sampling rate of 100 samples/second.	CO4	PO3	08
	c)	Draw the frequency sampling structure of FIR filters along with relevant expressions	CO1	-	06
		OR			

	8	a)	Find the impulse response for the following system. Draw the pole-zero plot. $y(n) - 0.5y(n-1) = x(n)$	CO2	PO1	06
		b)	With relevant expressions, show the design procedure for FIR filters using frequency sampling technique.	CO2	PO1	06
		c)	With the help of an example impulse response, Draw the linear phase structure of FIR filter for the following cases (i) N is odd, Where N is the length of the filter (ii) N is even, , Where N is the length of the filter	CO2	PO1	08
UNIT - V						
	9	a)	Show with an example how wavelet transform can be applied for denoising applications	CO1	-	06
		b)	Design a digital filter equivalent (Apply Bilinear transformation) of a 2 nd order Butterworth low-pass filter with a cut-off frequency $f_c = 100$ Hz and a sampling frequency $f_s = 1000$ samples/sec. Derive the finite difference equation and draw the realization structure of the filter. Given that the analogue prototype of the frequency-domain transfer function $H(s)$ for a Butterworth filter is $\frac{1}{s^2 + \sqrt{2}.s + 1}$	CO4	PO3	10
		c)	With relevant expressions, draw the Direct form-I realization of a second order IIR filter.	CO1	-	04
OR						
	10	a)	Show with an example how wavelet transform can be applied for compression of data.	CO1	-	06
		b)	With relevant expressions, show the design procedure of IIR filter using impulse invariant method.	CO1	-	08
		c)	With relevant expressions, draw the Direct form-II realization of a second order IIR filter.	CO1	-	06
