

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET4PCSSD

Max Marks: 100

Course: SIGNALS AND SYSTEMS: DIGITAL

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Consider the discrete time sequence</p> $x(n) = \cos(n\pi/8)$ <p>Find a continuous-time signal that would produce this sequence when sampled at a frequency of $f_s = 10$ Hz.</p>	CO3	PO2	05
	b)	<p>Consider the system shown in Fig 1b.</p> <p>Fig 1b</p> <p>i) Is the overall system LTI? ii) Is the overall system causal? iii) Is the overall system BIBO stable</p>	CO2	PO1	07
	c)	<p>Determine which of the following signals is periodic. If periodic, determine its period</p> <p>i) $x[n] = e^{j(2\pi n/5)}$ ii) $x[n] = \sin(\pi n/19)$ iii) $x[n] = n e^{j\pi n}$ iv) $x[n] = e^{jn}$</p>	CO2	PO1	08
OR					
2	a)	<p>Consider the sequence given below:</p> $x[n] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]$ <p>Sketch the following:</p> <p>(i) $x[2n]$ (ii) $x[n/2]$ (iii) $x[-n]$ (iv) $x[-n+3]$ (v) $x[2n-4]$</p> <p>Obtain Energy and Power of the signal</p>	CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	What are PRBS sequences? List few applications of PRBS.	CO1	--	04
	c)	Consider the system given below: $y[n] = 2x[n] + 1.5y[n-1]$ With suitable justification: (i) Classify the system as FIR/IIR (ii) Classify the system as Stable/Unstable	CO2	PO2	06
UNIT - II					
3	a)	Consider an LTI system with input $x[n]$ and output $y[n]$ that satisfies the difference equation $y[n] - 5/2 y[n-1] + y[n-2] = x[n] - x[n-1]$ Determine all possible values for the system's impulse response at $n = 0$	CO2	PO1	08
	b)	Obtain a 5-point Circular Convolution of two signals given below $x(n) = (1.5)^n \quad 0 \leq n \leq 2$ $h(n) = 2n-3 \quad 0 \leq n \leq 3$	CO2	PO1	07
	c)	Let Θ be Uniform $[-\pi, \pi]$, $X(t) = \cos(\omega t + \Theta)$. Find $R_{XX}(t_1, t_2)$	CO2	PO1	05
OR					
4	a)	State the properties of Impulse response	CO1	--	05
	b)	Consider the sequence given below: $x[n] = [1, 3, 5, 7]$ $y[n] = [2, 4, 6, 8]$ (i) Perform convolution of the above sequences, assume they are periodic, with period 4 (ii) Obtain and sketch the auto-correlation of $x[n]$ (iii) Obtain and sketch the cross-correlation of $x[n]$ and $y[n]$	CO1	PO1	10
	c)	Consider the sequence given below: $x[n] = [1, 3, 5, 7]$ $y[n] = [2, 4, 6, 8]$ Obtain the linear convolution of the above sequence using Z-Transform	CO1	PO1	05
UNIT - III					
5	a)	Use the 8 point radix-2 DIT-FFT algorithm to find the DFT of the sequence $x(n) = \{0.707, 1, 0.707, 0, -0.707, -1, -0.707, 0\}$.	CO2	PO1	10
	b)	Derive computational complexity in DIF-FFT in terms of i) Total Number of butterfly operations ii) Total number of complex additions iii) Total number of complex multiplications. Consider $N = 8$.	CO2	PO1	06
	c)	Given a continuous-time signal $x(t) = \cos(2\pi ft)$ with frequency $f = 5$ Hz, and a sampling rate $f_s = 8$ Hz, demonstrate aliasing by finding the frequency of the sampled signal.	CO2	PO1	04
OR					
6	a)	Explain up-sampling and its impact on the spectrum	CO1	--	04
	b)	Obtain the inverse DFT using suitable DIF-FFT algorithm $X[k] = [10, 3-4j, 5, 3+4j]$	CO1	PO1	06

	c)	Obtain the DFT using the DIF-FFT algorithm, and hence sketch the magnitude spectrum of the sequence given below. Assume the sampling frequency is 80Hz. $x[n] = [0, 0.707, 1, 0.707, 0, -0.707, -1, 0.707]$	CO1	PO1	10
		UNIT - IV			
7	a)	Design a low-pass filter using rectangular window of length $M = 5$, given $\omega_c = \pi/2$ rad/s. Find the values of $h(n)$.	CO3	PO2	10
	b)	Consider a system described by the difference equation $y(n) = 6y(n-1) - 9y(n-2) + x(n) + 0.5x(n-1)$. Find the response of the system to the input $x(n) = (0.5)^n u(n)$. The initial conditions are given as $y(-1) = 1$ and $y(-2) = 1$.	CO2	PO1	06
	c)	Given the autocorrelation function $R_{xx}[k] = 2\delta[k] + \delta[k-1] + \delta[k+1]$, find the power spectral density.	CO2	PO1	04
		OR			
8	a)	Design a 5-tap low-pass FIR filter with a cut-off frequency of 0.4π using frequency sampling method.	CO3	PO2	10
	b)	For the function shown find and plot poles and zeros $H(z) = \frac{(z - j)(z + j)}{\left(z - \left(\frac{1}{2} - \frac{1}{2j}\right)\right) \left(z - \left(\frac{1}{2} + \frac{1}{2j}\right)\right)}$	CO2	PO2	05
	c)	Obtain transfer function of the given equation. $y[n] = 4y[n-1] - 3y[n-2] + 1.5x[n] - 0.5x[n-1]$	CO2	PO1	05
		UNIT - V			
9	a)	Design a digital low-pass filter with a cutoff frequency of $\omega_c = \pi/4$ radians/sample using the bilinear transform. The analog filter is a first-order low-pass filter with a cutoff frequency $\omega_c = \pi/2$ radians/second. Find the digital filter's transfer function	CO3	PO2	10
	b)	Find the Direct form I and Direct Form II representation of the filter with the transfer function $H(z) = \frac{0.5(1-z^{-2})}{1+1.3z^{-1}+0.36z^{-2}}$	CO3	PO2	10
		OR			
10	a)	Design a digital low-pass filter using the Impulse Invariant Method with the following specifications: Analog filter transfer function: $H(s) = 1/(s+1)$, Sampling Period: $T = 1$ second	CO3	PO2	10
	b)	With relevant equations and figures explain the design of IIR Butterworth Filters using Impulse Invariant method	CO2	PO1	10