

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

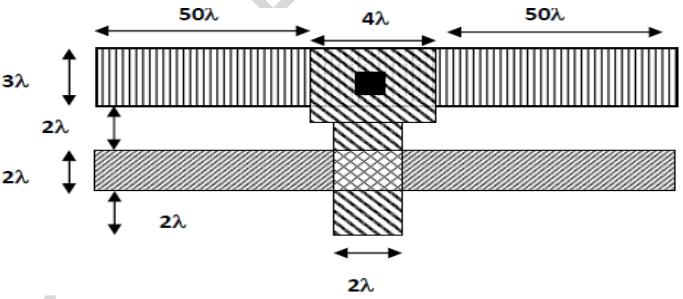
Programme: B.E.

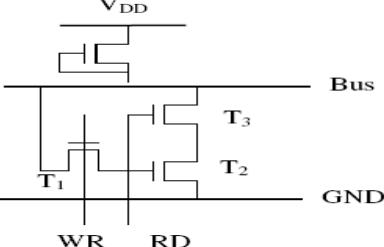
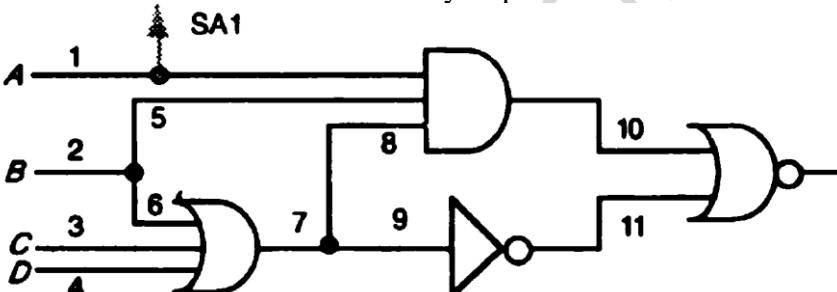
Semester: IV

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 19ET4PCVLD



Max Marks: 100



Course: VLSI Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define Moore's first law with an appropriate graph and thereby explain its implication.	<i>CO1</i>		04
	b)	With neat sketches, analyze the nMOS fabrication technique. Clearly describe the various masking operations performed.	<i>CO1</i>		08
	c)	Design and implement the logic function, $Y = (A+B) \cdot C$ using minimum number of transistors. Use CMOS technology for implementation and thereby sketch the stick diagram.	<i>CO3</i>	<i>PO3</i>	08
OR					
2	a)	Compare CMOS and Bipolar technologies.	<i>CO1</i>		04
	b)	Analyze with relevant diagrams and masking operations, the p-well fabrication process.	<i>CO2</i>	<i>PO1</i>	08
	c)	Using minimum number of transistors, design the logic function $Y = (A+BC)$ and thereby implement the same using monochrome layout diagram.	<i>CO2</i>	<i>PO1</i>	08
UNIT - II					
3	a)	Design a circuit for the expression $Y = \overline{A} + BC$ through CVSL technology and explain the advantages of CVSL technology.	<i>CO3</i>	<i>PO3</i>	10
	b)	Design a RS latch dynamic CMOS circuit and analyze its working principle and thereby sketch its stick diagram.	<i>CO3</i>	<i>PO3</i>	10
OR					
4	a)	Design a 3-input OR gate using C ² MOS logic and analyze its working principle. Also sketch the stick diagram for the circuit.	<i>CO3</i>	<i>PO3</i>	10
	b)	Design a 4:1 Mux using Transmission gate and analyze its working principle. Also sketch the stick diagram for a 2:1 Mux circuit.	<i>CO3</i>	<i>PO3</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Derive the expressions for rise – time estimation and fall – time estimation of a CMOS inverter with relevant terminologies.	CO2	PO1	06
	b)	Explain the basic architectural guidelines considered in VLSI design.	CO1		04
	c)	<p>Two nMOS inverters are cascaded as shown in Fig below. Calculate the delay in terms of τ. $C_1 = 4\lambda C_g$ at the output of first inverter, hence analyze:</p> <p>(i) The delay if $\tau = 0.4$ ns</p> <p>(ii) If due to connecting wires, the stray capacitance increases by $4\lambda C_g$, what is the delay time?</p>	CO3	PO4	10
OR					
6	a)	Prove that the total time constant is 0.7 ns for a CMOS inverter and 0.5 ns for an nMOS inverter. Use appropriate terminologies and equivalent circuits for your analysis.	CO3	PO2	10
	b)	Determine the total capacitance between the following area and substrate in the figure given below. Consider 5μm technology for your calculations.	CO3	PO2	10
UNIT - IV					
7	a)	Design and analyze the following: i. 4-bit combinational shifter ii. 4 X 4 barrel shifter	CO3	PO3	10
	b)	Design and analyze with relevant diagrams a Manchester carry chain adder and also write the stick diagram for a 1-bit Manchester chain.	CO3	PO3	10
OR					
8	a)	Design and analyze the following: i. 4 bit SISO dynamic register ii. 4 X 4 cross bar switch	CO3	PO3	10

	b)	Design and analyze with relevant diagrams a Serial-Parallel multiplier. Consider an example for your analysis.	CO3	PO3	10
		UNIT - V			
9	a)	Identify the memory device in figure below and thereby explain its operation.	CO2	PO1	03
	b)	Analyze the practical design issues of testability with respect to the following: <ol style="list-style-type: none"> Controllability and Observability Gated Clocks Redundant Logic 	CO2	PO1	07
	c)	For the circuit given below in figure below consider a <ol style="list-style-type: none"> SA1 at line 1 and thereby implement the test vectors SA1 at line 8 and thereby implement the test vectors 	CO3	PO4	10
		OR			
10	a)	Analyze the following practical design issues in VLSI testing environment: <ol style="list-style-type: none"> Use of Bus structures Self – Reset Logic BILBO testing 	CO4	PO2	10
	b)	Implement and analyze the following memory cells. Sketch the equivalent stick diagrams. <ol style="list-style-type: none"> 3T Dynamic RAM cell Pseudo static memory cell 	CO4	PO2	10
