

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 19ET5PE1CY

Max Marks: 100

Course: CRYPTOGRAPHY

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Mark s																									
1	a)	Explain different types of security attacks with relevant diagrams	CO1		06																									
	b)	Encrypt the plaintext FRIDAY using Hill Cipher with the key $\begin{bmatrix} 7 & 8 \\ 19 & 3 \end{bmatrix}$ Show the appropriate calculations and thereby deduce the ciphertext.	CO2	PO1	06																									
	c)	Use double transposition cipher to encrypt and decrypt the text “attack postponed until pm meeting” with the encryption key 5 2 1 3 6 4 7	CO2	PO1	08																									
		OR																												
2	a)	Using the Playfair matrix given below, Encrypt the message: I only regret that I have but one life to give for my country	CO2	PO1	08																									
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>J/K</td><td>C</td><td>D</td><td>E</td><td>F</td></tr> <tr> <td>U</td><td>N</td><td>P</td><td>Q</td><td>S</td></tr> <tr> <td>Z</td><td>V</td><td>W</td><td>X</td><td>Y</td></tr> <tr> <td>R</td><td>A</td><td>L</td><td>G</td><td>O</td></tr> <tr> <td>B</td><td>I</td><td>T</td><td>H</td><td>M</td></tr> </table>	J/K	C	D	E	F	U	N	P	Q	S	Z	V	W	X	Y	R	A	L	G	O	B	I	T	H	M			
J/K	C	D	E	F																										
U	N	P	Q	S																										
Z	V	W	X	Y																										
R	A	L	G	O																										
B	I	T	H	M																										
	b)	Alice meets Bob and says yqqf yq pgduzs iadwuzs tagd. iq iuxx pueogee ftq bxmz . If she is using a key of 12 , what does she want to convey.	CO2	PO1	06																									
	c)	Analyze the network security model.	CO1		06																									

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Solve using CRT $x \equiv 4 \pmod{10}$ $x \equiv 6 \pmod{13}$ $x \equiv 4 \pmod{7}$ $x \equiv 2 \pmod{11}$	<i>CO2</i>	<i>PO1</i>	06
	b)	In S-DES Obtain the cipher text for the given 8 bit plain text (1 0 0 0 1 0 1) , $K_1 = 10100100$ and $K_2= 01000011$ to generate cipher text, Consider $IP = (2,6,3,1,4,8,5,7)$, $E/P = (4,1,2,3,2,3,4,1)$, $P4 = (2,4,3,1)$ and $IP^{-1} = (4,1,3,5,7,2,8,6)$. $S0 = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 0 & 2 & 1 & 3 \\ 3 & 1 & 3 & 2 \end{bmatrix} \quad S1 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 3 & 0 & 1 & 0 \\ 2 & 1 & 0 & 3 \end{bmatrix}$	<i>CO3</i>	<i>PO1</i>	08
	c)	Using Fermat's theorem, find $4^{225} \pmod{13}$	<i>CO2</i>	<i>PO1</i>	06
OR					
4	a)	Derive expression for Fermat's theorem.	<i>CO1</i>		06
	b)	Explain with diagram single round DES	<i>CO1</i>		08
	c)	Derive expression for CRT.	<i>CO1</i>		06
UNIT - III					
5	a)	Explain substitute bytes transformation, shift rows transformation, mix column in AES	<i>CO1</i>		10
	b)	With diagram explain CFB operations with relevant equations and its advantages	<i>CO1</i>		10
OR					
6	a)	Analyze the concept of AES Single round	<i>CO1</i>		12
	b)	Explain Counter (CTR) mode and its advantages	<i>CO1</i>		08
UNIT - IV					
7	a)	Perform encryption and decryption using RSA algorithm for the following data; $p=17$, $q=23$, $e=17$, $M=75$	<i>CO2</i>	<i>PO1</i>	12
	b)	With diagram explain different approach of Message authentication in cryptographic hash functions	<i>CO1</i>		08
OR					
8	a)	User A and User B use the Diffie-Hellman key exchange technique. A common prime $q = 467$ and a primitive root $a = 2$. i. If user A has a private key $X_A = 228$, what is A's public key Y_A ?	<i>CO2</i>	<i>PO1</i>	12

		ii. If user B has a private key $X_B = 57$, what is B's public key Y_B ? What is the shared secret key?			
	b)	Derive an expression for man in middle attack with diagram	CO2	PO1	08
UNIT - V					
9	a)	Analyze the concept of RC4.	CO1		10
	b)	Analyze the various PRNG requirements.	CO1		10
OR					
10	a)	Analyze the concept of Blum Blum Shub Generator	CO1		10
	b)	With relevant equation and example, explain linear congruential generator	CO1		10
