

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engg

Duration: 3 hrs.

Course Code: 22ET5PE1DD

Max Marks: 100

Course: DIGITAL SYSTEM DESIGN

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Write a Verilog code for any five gates in different modules.	<i>CO1</i>		10
	b)	Draw the state level diagram and develop the Verilog for a non-overlapping Mealy state machine which produces output as '1' if the input bit stream is "1101" with neat indentation.	<i>CO2</i>	<i>PO1</i>	10
OR					
2	a)	What is FSM? With a neat block diagram explain the different types of FSMs?	<i>CO1</i>		10
	b)	Mention any four Verilog operators and illustrate the same using data flow modeling.	<i>CO1</i>		10
UNIT - II					
3	a)	Realize CMOS Inverter using MOS switches and write the Verilog description for the same.	<i>CO2</i>	<i>PO1</i>	10
	b)	For the following Verilog constructs what is the interpretation of the synthesis tools to translate for gate-level representation. i)The if statement ii)The case statement iii)The always statement Write a simple Verilog code to justify the above statements.	<i>CO2</i>	<i>PO1</i>	06
	c)	Which are the Verilog operators supported for synthesis (any 4).	<i>CO1</i>		04
UNIT - III					
4	a)	Explain the different types of PLDs.	<i>CO1</i>		10
	b)	What is FPGA? Explain the different components of FPGA.	<i>CO1</i>		10
UNIT - IV					
5	a)	Design and write Verilog code to implement the functionality of 4-bit Carry Look Ahead Adder.	<i>CO2</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Design and write Verilog code to implement multiplication of two, 2-bit binary numbers.	CO2	PO1	10
		OR			
6	a)	Design and write Verilog code to implement the functionality of 1-bit Full Adder using Data flow modeling.	CO3	PO3	10
	b)	Illustrate the concept of division for two 4-bit numbers	CO2	PO1	10
		UNIT - V			
7	a)	What are SM charts and explain the components of SM charts.	CO1		10
	b)	Explain the derivation of SM Charts for any digital system.	CO1		10

SUPPLEMENTARY EXAMS 2024