

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engineering

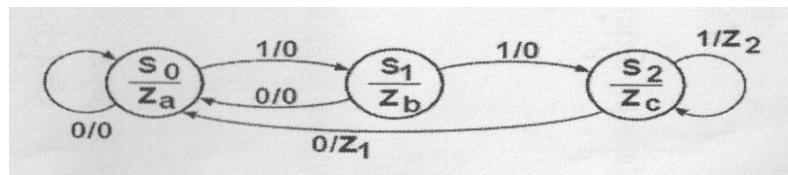
Duration: 3 hrs.

Course Code: 23ET5PE1DD / 22ET5PE1DD

Max Marks: 100

Course: DIGITAL SYSTEM DESIGN

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.


UNIT - I			CO	PO	Marks
1	a)	Design a Full Adder using a suitable decoder and hence describe the behavior in Verilog HDL	CO3	PO3	06
	b)	Design a BCD to Excess-3 code converter using sequential logic with Verilog	CO3	PO3	08
	c)	Analyze the following operations and design using Verilog HDL	CO3	PO3	06
OR					
2	a)	Convert the following Mealy FSM to Moore FSM	CO2	PO2	06
		<pre> graph LR q0((q0)) -- "b/0" --> q0 q0 -- "a/0" --> q1((q1)) q1 -- "a/0" --> q1 q1 -- "b/1" --> q2((q2)) q2 -- "b/0" --> q2 q2 -- "a/0" --> q1 </pre>			
	b)	Write a Verilog model of the Mealy FSM described by the state diagram with a test bench	CO3	PO3	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Design a synchronous counter using D-FFs for the sequence 0, 1, 2, 4, 6, 0 and hence describe the behavior in Verilog HDL	CO3	PO3	08
		UNIT - II			
3	a)	Explain Synthesis process with flow chart	CO1	PO1	04
	b)	Design a switch level diagram for the function $Y = \overline{(A + B)(C + D)E}$ and hence describe the behavior in Verilog	CO2	PO2	06
	c)	For the following code obtain gate level synthesis <pre>module example (a, y); input [2:0]a; output [3:0]y; reg y; always@ (a) begin if (a<3'b101) y=2*a +5; end endmodule</pre>	CO3	PO3	10
		OR			
4	a)	Design a D-FF using minimum number of transistors and hence describe the behavior in Verilog HDL	CO3	PO3	06
	b)	Design a 2-to-1 multiplexer using bufif0 and bufif1 gates and hence describe the Verilog behavior	CO2	PO2	04
	c)	Analyze the following Verilog process and give the circuit generated by the code 8M <pre>module syn (clk,clr,Dout, Din,load); input clk,clr; input [3:0] Din; output reg [3:0] Dout; always @ (posedge clk or posedge clr) begin if (clr == 1'b1) Dout <= 4'b0; else if (load ==1'b1) Dout <=Din; end endmodule</pre>	CO3	PO3	10
		UNIT - III			
5	a)	List the steps for designing a digital system with FPGA	CO1	PO1	04

	b)	Realize a 2-bit binary counter using Xilinx 3000 series OR Xilinx 4000 series device	CO2	PO2	08
	c)	Realize the following functions using PLA $F1 (A,B,C,D) = \sum m(2,3,5,7,8,9,10,11,13,15)$ $F2 (A,B,C,D) = \sum m(2,3,5,6,7,10,11,14,15)$ $F3 (A,B,C,D) = \sum m(6,7,8,9,13,14,15)$	CO2	PO2	08
		OR			
6	a)	Briefly explain the operation of ALTERA 7000 series CPLD	CO1	PO1	08
	b)	Realize the following functions using a suitable PAL $Q_1^+ = A' B Q_1 + A' B' Q_2$ $Q_2^+ = A Q_2 + B' Q_1$	CO2	PO2	08
	c)	With a neat diagram explain the operation of I/O block in 3000 series FPGA	CO1	PO1	04
		UNIT - IV			
7	a)	Design and draw the gate level diagram and hence write the Verilog code for 2-bit X 2-bit Combinational Array Multiplier. Also write the stimulus block	CO3	PO3	10
	b)	With a neat block diagram explain the operation of serial adder with accumulator	CO1	PO1	05
	c)	Draw the state graph for binary divider which divides 8-bit dividend to 4-bit divisor	CO2	PO2	05
		OR			
8	a)	Draw the state graph and hence write a Verilog code for 4-bit X 4-bit unsigned Binary multiplier	CO3	PO3	08
	b)	Write a Verilog code for 4-bit carry look ahead adder	CO3	PO3	04
	c)	Write state graph and Verilog description of a traffic light controller for the intersection of street A and street B with the following conditions: i. When A is green, it remains green at least 50sec, and then the lights changes only when a vehicle approaches on B. ii. When B is green, it remains in green at least 40sec, and then the lights change back unless there is a vehicle on street B and none on street A.	CO3	PO3	08
		UNIT - V			
9	a)	Draw an SM chart for half adder	CO2	PO2	05
	b)	Explain the concept of linked state machines	CO1	PO1	05
	c)	Draw an SM chart and hence write a Verilog code for 4-bit multiplier control network	CO3	PO3	10

OR					
	10	a)	Realize SM chart and hence write Verilog code for Dice game controller	CO3	PO3 10
		b)	Explain the concept of microprogramming	CO3	PO1 05
		c)	Convert the following state diagram to state machine chart.	CO3	PO2 05

REAPPEAR EXAMS 2024-25