

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET5PE1DD / 22ET5PE1DD

Max Marks: 100

Course: DIGITAL SYSTEM DESIGN

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the structure of Verilog module for full adder using half adder.			<i>CO1</i>	<i>PO1</i>	06
		b)	Illustrate Unary, Binary and Ternary operators are used in Verilog with example.			<i>CO1</i>	<i>PO1</i>	06
		c)	Write the Verilog module for 4 to 1 line Multiplexer using dataflow and Behavioral modeling. Compare with execution.			<i>CO1</i>	<i>PO2</i>	08
OR								
	2	a)	Compare Mealy with Moore FSM Designs.			<i>CO1</i>	<i>PO1</i>	06
		b)	Discuss the importance of Data Types used in Verilog HDL. Illustrate with example.			<i>CO1</i>	<i>PO1</i>	06
		c)	Design and Implement FSM for BCD to Excess-3 code Convertor using DFF.			<i>CO3</i>	<i>PO3</i>	08
UNIT - II								
	3	a)	What is logic synthesis? Describe the Synthesis design Flow with neat flowchart.			<i>CO3</i>	<i>PO1</i>	06
		b)	Construct 2 to 1 line Multiplexer using CMOS switches and write the switch level modeling.			<i>CO2</i>	<i>PO2</i>	06
		c)	Draw the circuit for NOR gate using transistors and write Verilog code using CMOS switches with test bench to verify the design.			<i>CO2</i>	<i>PO2</i>	08
OR								
	4	a)	Write the switch level modeling for $Y = (A + BC)'$. Verify the design with stimulus block.			<i>CO2</i>	<i>PO2</i>	06

	b)	Discuss the impact of logic synthesis and trade-off between area and time.	CO2	PO1	06
	c)	Write the behavioral model to calculate the function $y=2x+3$, where x is 0 to 3 and derive the RTL schematic.	CO3	PO3	08
		UNIT - III			
5	a)	Illustrate the classification of popular or major Programmable Logic Devices with neat block-bricks.	CO1	PO1	06
	b)	Write the functional table for full adder and implement sum and carry expressions using Programmable Array Logic (PAL).	CO3	PO3	06
	c)	Draw the architecture of Complex Programmable Logic Devices (CPLDs) and explain the operation.	CO2	PO1	08
		OR			
6	a)	Compare the following: i) PLA with PAL. ii) CPLD with FPGA.	CO2	PO1	06
	b)	Realize the following Boolean expressions using $4 \times 5 \times 3$ Programmable Logic Array (PLA). $F1 = \sum m(2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$ $F2 = \sum m(2, 3, 5, 6, 7, 10, 11, 14, 15)$ $F3 = \sum m(6, 7, 8, 9, 13, 14, 15)$	CO3	PO3	06
	c)	Draw the architecture of Field-Programmable Gate Arrays (FPGAs) and explain the operation.	CO2	PO1	08
		UNIT - IV			
7	a)	Write the block diagram of a BCD to 7-Segment Display Decoder and write the behavioral Verilog module.	CO3	PO3	06
	b)	Draw the Block Diagram for Binary parallel divider and illustrate the operation with example.	CO2	PO2	06
	c)	Design and write Verilog Description of a 4-Bit Carry Look-Ahead Adder.	CO3	PO3	08
		OR			
8	a)	Illustrate the addition of two BCD numbers and write the Verilog code.	CO3	PO3	06
	b)	Draw the Block Diagram for Binary Multiplier and illustrate the operation with example.	CO2	PO2	06
	c)	Write the State Graph for Traffic Light Controller and write the Verilog Code for Traffic-Light Controller.	CO3	PO3	08
		UNIT - V			
9	a)	Explain the principal components of an SM charts with neat block views. Draw the SM chart for the equation $Y=A+A'BC$.	CO1	PO1	06

		b)	Draw and explain SM Charts for Serially Linked State Machines.	CO2	PO2	06
		c)	Write the SM Chart for Binary multiplier and write the Verilog code for the multiplier controller.	CO3	PO3	08
			OR			
10	a)		Illustrate Parallel and Serial form SM blocks with flowchart.	CO2	PO2	06
	b)		<p>For the Dice game based on the following rules, draw the SM chart and develop the behavioral Verilog code.</p> <p>I) After the 1st roll of the dice the player wins if the sum is 7 or 11. The player loses if the sum is 2, 3 or 12. Otherwise, the sum the player obtained on the 1st roll is referred to as a point and he/she must roll the dice again.</p> <p>II) On the 2nd or subsequent roll of the dice, the player wins if the sum equals the point, and he/she loses if the sum is 7. Otherwise, the player must roll again until he/she finally wins or loses.</p> <p>Write a test -bench for the dice game problem to test the game components.</p>	CO3	PO3	14
