

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET5PECY

Max Marks: 100

Course: CRYPTOGRAPHY

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain active and passive attacks in cryptography.	<i>CO1</i>	-	07
	b)	Encrypt the plaintext “do not wait for” using Hill cipher with the key . $\begin{pmatrix} 7 & 4 \\ 17 & 3 \end{pmatrix}$	<i>CO2</i>	<i>PO1</i>	07
	c)	Using rail fence method, key= 4, Encrypt: namma Bengaluru is silicon valley of India.	<i>CO2</i>	<i>PO1</i>	06
OR					
2	a)	With diagram explain network access security model.	<i>CO1</i>	-	06
	b)	Using play fair method, decrypt UGRMKCSXHMUFMKBTOXGCMVATLUIV using the key = MONARCHY.	<i>CO2</i>	<i>PO1</i>	06
	c)	Use double transposition cipher to encrypt and decrypt the text “attack post postponed until pm meeting ” with the encryption key being 5213647	<i>CO2</i>	<i>PO1</i>	08
UNIT - II					
3	a)	Explain S-DES key generation with diagram.	<i>CO1</i>	-	06
	b)	Derive an expression for Fermat’s theorem.	<i>CO2</i>	<i>PO1</i>	07
	c)	Solve using CRT $X \equiv 6 \pmod{7}$, $X \equiv 4 \pmod{8}$, $X \equiv 3 \pmod{5}$.	<i>CO3</i>	<i>PO2</i>	07
OR					
4	a)	Explain the details of single round in DES with diagram.	<i>CO1</i>	-	07
	b)	In S-DES Obtain the cipher text for the given 8 bit plain text	<i>CO3</i>	<i>PO2</i>	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>(1 0 1 0 0 1 1 1) ,consider following data, 10 bit key (1 0 1 0 1 0 0 0 1 1), IP= (2,6,3,1,4,8,5,7) , E/P = (4,1,2,3,2,3,4,1), P4 = (2,4,3,1) , IP⁻¹ = (4,1,3,5,7,2,8,6), P10 = (3 5 2 7 4 10 1 9 8 6) and P8 = (6 3 7 4 8 5 10 9)</p> <p style="text-align: center;">S0: $\begin{bmatrix} 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 0 & 2 & 1 & 3 \\ 3 & 1 & 3 & 2 \end{bmatrix}$</p> <p style="text-align: center;">S1: $\begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 3 & 0 & 1 & 0 \\ 2 & 1 & 0 & 3 \end{bmatrix}$</p>				
	c)	Explain stream cipher using diagram.	CO1	-	06	
UNIT - III						
5	a)	With diagram explain Counter mode operations and its advantages.	CO1	-	08	
	b)	With diagram explain general structure of AES.	CO1	-	06	
	c)	With diagram explain triple DES with two keys.	CO1	-	06	
OR						
6	a)	With diagram explain single round AES.	CO1	-	07	
	b)	Explain mix column transformation and add round key transformation in AES.	CO1	-	07	
	c)	Explain Electronic code book with diagram.	CO1	-	06	
UNIT - IV						
7	a)	Consider a Diffie – Hellman scheme with a common prime $q = 192$ and primitive root $\alpha = 7$. If user A has private key $X_A=11$ and user B has private key $X_B=13$, compute the secret key of user A & user B.	CO3	PO2	08	
	b)	Explain expression for message authentication, confidentiality, where authentication is tied to cipher text with diagram.	CO1	-	06	
	c)	Explain MAC with diagram.	CO1	-	06	
OR						
8	a)	Perform encryption and decryption using RSA algorithm for the following $P=7$, $q = 11$, $e=17$, and $M=8$.	CO3	PO2	07	
	b)	Explain and derive and expression for man in middle attack in Diffie – Hellman key exchange.	CO2	PO1	07	
	c)	With diagram explain public key cryptosystem for secrecy and authentication.	CO1	-	06	
UNIT - V						
9	a)	With diagram explain PRNG and PRF.	CO1	-	06	
	b)	With relevant equation and derive an expression for Blum Blum Shub generator.	CO1	-	06	

		c)	Derive an expression for Linear Congruential Generator and generate sequence of random number for following data , a = 9, c = 0, m = 64 and $X_0=1$	CO2	PO1	08
			OR			
	10	a)	What are the requirement of PRNG?	CO1	-	06
		b)	With diagram explain PRNG using OFB.	CO1	-	06
		c)	With relevant diagram explain RC4 stream cipher.	CO1	-	08

REAPPEAR EXAMS 2024-25