

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET5PECY

Max Marks: 100

Course: CRYPTOGRAPHY

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																										
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain different types of security attacks with relevant diagrams.	CO1	-	06																									
		b)	Encrypt the plaintext PAYMOREMONEY using Hill cipher with the key $\begin{pmatrix} 17 & 7 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{pmatrix}$	CO2	PO1	06																									
		c)	Use double transposition cipher to encrypt and decrypt the text “attack postponed until pm meeting” with the encryption key 5 2 1 3 6 4 7	CO2	PO1	08																									
OR																															
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Using the Playfair matrix given below, Encrypt the message: I only regret that I have but one life to give for my country	CO2	PO1	08																									
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>J/K</td><td>C</td><td>D</td><td>E</td><td>F</td></tr> <tr> <td>U</td><td>N</td><td>P</td><td>Q</td><td>S</td></tr> <tr> <td>Z</td><td>V</td><td>W</td><td>X</td><td>Y</td></tr> <tr> <td>R</td><td>A</td><td>L</td><td>G</td><td>O</td></tr> <tr> <td>B</td><td>I</td><td>T</td><td>H</td><td>M</td></tr> </table>	J/K	C	D	E	F	U	N	P	Q	S	Z	V	W	X	Y	R	A	L	G	O	B	I	T	H	M			
	J/K	C	D	E	F																										
U	N	P	Q	S																											
Z	V	W	X	Y																											
R	A	L	G	O																											
B	I	T	H	M																											
	b)	Alice meets Bob and says yqqf yq pgduzs iadwuzs tagd. iq iuxx pueogee ftq bxmz. If she is using a key of 12 , what does she want to convey?	CO2	PO1	06																										
	c)	Analyze the network security model.	CO1	-	06																										
UNIT - II																															
3	a)	Derive the CRT theorem.	CO2	PO1	06																										

	b)	<p>In S-DES Obtain the cipher text for the given 8 bit plain text (1 0 1 0 1 0 1 0) , K₁ = 10100100 and K₂= 01000011 to generate cipher text, Consider:</p> <p>IP= (2,6,3,1,4,8,5,7) , E/P =(4,1,2,3,2,3,4,1), P4 = (2,4,3,1) and IP⁻¹ = (4,1,3,5,7,2,8,6).</p> $S0 = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 0 & 2 & 1 & 3 \\ 3 & 1 & 3 & 2 \end{bmatrix} \quad S1 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 3 & 0 & 1 & 0 \\ 2 & 1 & 0 & 3 \end{bmatrix}$	CO3	PO2	08
	c)	Using Fermat's theorem, find 4²²⁵ mod 13	CO3	PO2	06
		OR			
4	a)	Derive expression for Fermat's theorem.	CO2	PO1	06
	b)	<p>Solve using CRT, the following :</p> <p>x ≡ 4 (mod 10) x ≡ 6 (mod 13) x ≡ 4 (mod 7) x ≡ 2 (mod 11)</p>	CO3	PO2	07
	c)	Explain with diagram single round DES.	CO1	-	07
		UNIT - III			
5	a)	Analyze the concept of AES Single round.	CO1	-	08
	b)	With relevant expression and diagram explain Triple DES with Two keys.	CO1	-	06
	c)	Explain Counter (CTR) mode and its advantages.	CO1	-	06
		OR			
6	a)	Explain substitute bytes transformation, shift rows transformation, mix column in AES.	CO1	-	08
	b)	With an appropriate diagram, explain the structure of AES.	CO1	-	06
	c)	With diagram explain CFB operations with relevant equations and its advantages.	CO1	-	06
		UNIT - IV			
7	a)	Perform encryption and decryption using RSA algorithm for the following data; p=17, q=23, e=17, M=75	CO2	PO1	08
	b)	With a diagram explain general structure of secure hash code.	CO1	-	06
	c)	Analyze with relevant diagram the Man in the middle attack.	CO2	PO1	06
		OR			
8	a)	<p>User A and User B use the Diffie-Hellman key exchange technique. A common prime q = 467 and a primitive root a = 2.</p> <p>i. If user A has a private key X_A = 228, what is A's public key Y_A?</p>	CO3	PO2	08

		ii. If user B has a private key $X_B = 57$, what is B's public key Y_B ? What is the shared secret key?			
	b)	Analyze the concept of MAC with respect to authentication tied to plaintext and ciphertext.	CO1	-	06
	c)	Analyze the following with respect to Message Encryption: i. Internal and External Error control ii. Public key encryption	CO1	-	06
UNIT - V					
9	a)	Analyze the concept of RC4.	CO2	PO1	10
	b)	With relevant equation and example, explain linear congruential generator.	CO2	PO1	10
OR					
10	a)	Analyze the concept of Blum Blum Shub Generator.	CO2	PO1	10
	b)	With diagram explain PRNG and TRNG requirements.	CO1	-	10
