

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET5PCCS2

Max Marks: 100

Course: Communication Systems-2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	The output of an information source consists of 150 symbols, 32 out of which occur with a probability of 1/64 and remaining 118 occur with a probability of 1/236. The source emits 2000symbols/sec. Assuming that the symbols are chosen independently, find the average information rate of this source.		CO2	PO1	05
		b)	For the joint probability matrix given below, compute H(X), H(Y), H(X,Y), H(X/Y), H(Y/X), I(X,Y). Verify the relationship among these entropies.		CO2	PO2	10
		c)	$P(X,Y) = \begin{bmatrix} 0.05 & 0 & 0.20 & 0.05 \\ 0 & 0.10 & 0.10 & 0 \\ 0 & 0 & 0.20 & 0.10 \\ 0.05 & 0.05 & 0 & 0.10 \end{bmatrix}$ A binary source is emitting independent sequence of '0' and '1' with probability P and 1-P. Plot the entropy of the source versus probability.		CO2	PO1	05
			UNIT - II				
	2	a)	Apply Huffman encoding procedure for the following set of messages and determine efficiency of binary code. If the same technique is applied to second order extension, how much will be efficiency? X ₁ =0.7, X ₂ =0.15, X ₃ =0.15		CO2	PO2	10
		b)	Determine the efficiency of the code using Shanon's -encoding algorithm for the message symbols having probabilities 1/4, 1/8, 1/8, 3/16, and 5/16.		CO2	PO2	10

OR					
3	a)	A binary symmetric channel(BSC) has the following channel matrix with source probability of $P(X_1)=3/4$, $P(X_2)=1/4$. Find channel capacity, efficiency and Redundancy $P(Y/X) = \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$	CO2	PO2	10
	b)	Given the message x_1 to x_6 with probability 0.4, 0.2, 0.2, 0.1, 0.07 and 0.03. Construct a binary code by applying Shanaon fano encoding procedure and determine the code efficiency and Redundancy.	CO2	PO2	10
UNIT - III					
4	a)	For a systematic (7,4) linear block code, the parity matrix P is given by $[P] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ <ul style="list-style-type: none"> i) Find all possible valid code-vectors. ii) Draw the corresponding encoding circuit. iii) A single error has occurred in each of these received vectors. Detect and correct those errors. i) $R_a=[0111110]$ ii) $R_b=[1011100]$ iv) Draw the syndrome calculation circuit 	CO4	PO2	10
	b)	Consider a (6,3) linear code whose generator matrix is $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ <ul style="list-style-type: none"> i) Find all code vectors. ii) Find all the Hamming weights and distances. iii) Find minimum weight parity check matrix. iv) Draw the encoder circuit for the above codes. 	CO4	PO2	10
OR					
5	a)	Consider (15,11) cyclic code, generated by $g(x) = 1 + x + x^4$. Device a feedback shift register encoder circuit and illustrate encoding procedure with message vector 10010110111	CO4	PO2	10
	b)	For (7,4) cyclic code, the received vector $z(x)=1110101$ and the generator polynomial $g(x) = 1 + x + x^3$. Draw the syndrome calculation circuit and correct the error in the received vector.	CO4	PO2	10

UNIT - IV					
6	a)	Consider (3,1,2) convolutional coder with $g^{(1)} = 1\ 1\ 0$, $g^{(2)} = 1\ 0\ 1$, $g^{(3)} = 1\ 1\ 1$. Draw the encoder block diagram. Find the [G], Find the code word corresponding to information sequence 10101 using time and transform domain approach.	CO4	PO2	08
	b)	Consider (2,1,2) convolution encoder given below .Draw the state table, transition table, trellis, diagram and corresponding code tree. Using the code tree find encoded sequence for the message 11101. Verify using transform domain approach.	CO4	PO2	12
UNIT - V					
7	a)	Describe QPSK transmitter and receiver with an appropriate block diagram.	CO2	PO1	06
	b)	Describe the transmitter and receiver of OFDM with an appropriate block diagram.	CO2	PO1	07
	c)	Describe the MSK transmitter and receiver with an appropriate block diagram.	CO2	PO1	07
