

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

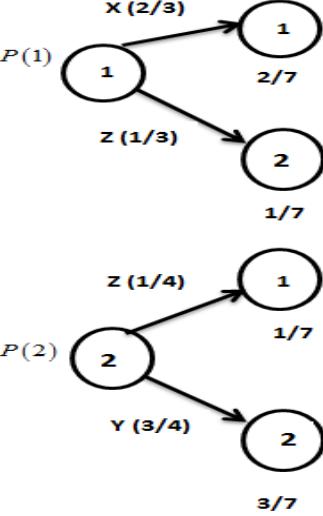
Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

Programme: B.E.

Semester: V

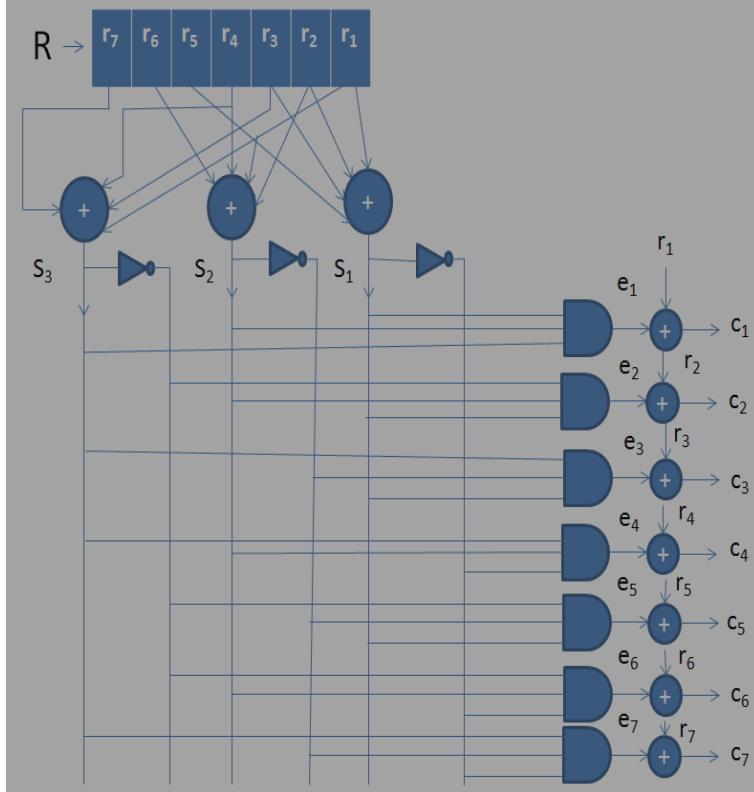
Branch: Electronics and Telecommunication Engineering


Duration: 3 hrs.

Course Code: 22ET5PCCS2

Max Marks: 100

Course: Communication system-2

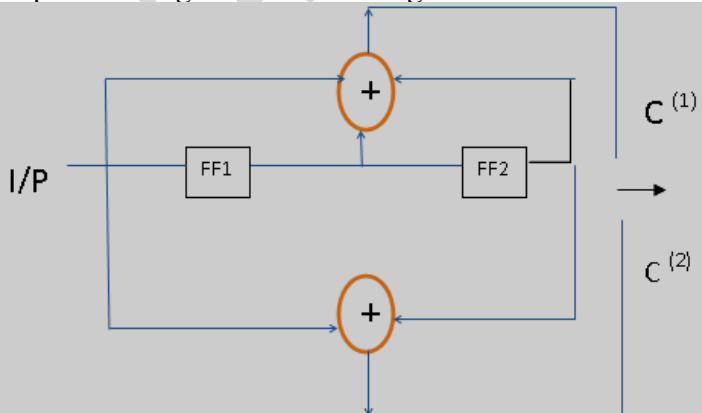

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Prove that the Entropy attains a maximum value when all the source symbols are Equiprobable	CO2	PO1	05
	b)	The Probability of the output symbols are given below. Arrive at the probability of the input symbols and obtain the Joint probability matrix. Calculate H (A), H (B), H (A, B), H (A/B), H (B/A) and I (A, B). $P(b_1) = \frac{1}{5} + \frac{3}{40} + 0 + 0 + 0$ $P(b_2) = 0 + \frac{9}{40} + \frac{1}{15} + 0 + 0$ $P(b_3) = 0 + 0 + \frac{2}{15} + \frac{1}{30} + \frac{1}{5}$ $P(b_4) = 0 + 0 + 0 + \frac{1}{15} + 0$	CO2	PO2	07
	c)	The probabilities and the states at the end of the first symbol interval are given in the figure below. Compute the State probabilities and obtain the state diagram. Extend the tree diagram at the end of the second symbol interval and prove that $G_2 > H$. 	CO2	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
2	a)	Obtain an expression for the Channel capacity of Symmetric/Uniform channel.	CO2	PO1	05
	b)	A source produces two symbols with probabilities 7/8 and 1/8 respectively. Device a coding scheme using Shannon-Fano encoding procedure to get a coding efficiency of at least 75%	CO2	PO1	07
	c)	The source emits 5 symbols A, B, C, D and E. The probability of Occurrence of the symbol A is (6/16). The following sequences are given $\alpha_1 = 0, \alpha_2 = \frac{6}{16}, \alpha_3 = \frac{10}{16}, \alpha_4 = \frac{13}{16}, \alpha_5 = \frac{15}{16}$ and $\alpha_6 = 1$. Compute the probabilities of B, C, D and E. Obtain the Shannon binary encoding algorithm for the source and calculate the efficiency of the source and redundancy.	CO2	PO2	08
OR					
3	a)	State and prove Noiseless Coding Theorem	CO2	PO1	06
	b)	Consider a source with 8 alphabets A to H with respective probabilities of 0.22, 0.20, 0.18, 0.15, 0.10, 0.08, 0.05 and 0.02. Construct a binary Huffman code and determine the efficiency.	CO2	PO1	07
	c)	Consider the cascading of two BSC channels with one channel having the following noise matrix. $P(Y/X) = \begin{bmatrix} 0.8 & 0.2 \\ 0.2 & 0.8 \end{bmatrix}$ The second channel has the conditional probability of $P(Z_1/Y_1) = 0.4$. Obtain the other conditional probabilities and noise matrix $P(Z/Y)$. (i) Find the noise matrix of the cascaded channel (ii) Find $I(X, Y)$ and $I(X, Z)$	CO2	PO2	07
UNIT - III					
4	a)	For a systematic (7, 4) LBC, the parity matrix is given below. Draw the Encoding and Syndrome Calculation circuit. An error has occurred in the received Vector $R = [1011100]$. Detect and correct the error. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	CO4	PO2	09
	b)	Prove that $CH^T = 0$, where C is a valid Code vector and H^T is the transpose of the parity check matrix.	CO4	PO2	04

	c)	<p>Design an encoder for (n, k) binary cyclic code generated by $g(x) = 1 + X + X^2 + X^4 + X^5 + X^8 + X^{10}$. Identify 'n' for 5 message bits. Compute the input message for the encoder by considering the content of the shift register given below.</p> <table border="1"> <thead> <tr> <th rowspan="2">No of Shifts</th><th rowspan="2">Input</th><th colspan="10">Shift Register Contents</th></tr> <tr> <th>R₀</th><th>R₁</th><th>R₂</th><th>R₃</th><th>R₄</th><th>R₅</th><th>R₆</th><th>R₇</th><th>R₈</th><th>R₉</th></tr> </thead> <tbody> <tr> <td>Initialization</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr> <tr> <td>1</td><td>?</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td></tr> <tr> <td>2</td><td>?</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td></tr> <tr> <td>3</td><td>?</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td></tr> <tr> <td>4</td><td>?</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td></tr> <tr> <td>5</td><td>?</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></tr> </tbody> </table>	No of Shifts	Input	Shift Register Contents										R ₀	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	R ₉	Initialization		0	0	0	0	0	0	0	0	0	0	1	?	1	1	1	0	1	1	0	0	1	0	2	?	0	1	1	1	0	1	1	0	0	1	3	?	0	0	1	1	1	0	1	1	0	0	4	?	0	0	0	1	1	1	0	1	1	0	5	?	1	1	1	0	0	0	1	0	0	1	CO4	PO3	07
No of Shifts	Input	Shift Register Contents																																																																																																	
		R ₀	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	R ₉																																																																																								
Initialization		0	0	0	0	0	0	0	0	0	0																																																																																								
1	?	1	1	1	0	1	1	0	0	1	0																																																																																								
2	?	0	1	1	1	0	1	1	0	0	1																																																																																								
3	?	0	0	1	1	1	0	1	1	0	0																																																																																								
4	?	0	0	0	1	1	1	0	1	1	0																																																																																								
5	?	1	1	1	0	0	0	1	0	0	1																																																																																								
		OR																																																																																																	
5	a)	<p>A linear hamming code is described by the generator polynomial $g(X) = 1 + X + X^3$. Determine the Generator and the Parity check matrix.</p>	CO3	PO2	05																																																																																														
	b)	<p>Device a feedback shift register encoding circuit for a (15, 7) cyclic code generated by the polynomial $g(x) = 1 + x^4 + x^6 + x^7 + x^8$.</p> <p>(i) Find the code vector for the message polynomial $d(x) = x^2 + x^3 + x^4$ in systematic form.</p> <p>(ii) Assume the first and the last bit of the code vector suffers transmission errors. Find the syndrome of code vector.</p>	CO4	PO2	07																																																																																														
	c)	<p>Design an encoder for (n, k) binary code given Decoding circuit. Identify the n and K values and obtain Parity Check matrix, Parity matrix, Generator matrix and Generate code words for all the possible combinations.</p>	CO4	PO3	08																																																																																														


UNIT - IV

6 a) For a $(3, 1, 2)$ convolutional code, with $g^{(1)} = 110$, $g^{(2)} = 101$ and $g^{(3)} = 111$.

- Draw the encoder block diagram.
- Find the generator matrix.
- Find the code word corresponding to the information sequence 11101 using time domain and transform domain approach.

10

b) For the binary convolutional encoder $(2, 1, 2)$ given below, If the received vector is [11 11 10 01 10 01 11] decode the input sequence using Viterbi Decoding

UNIT - V

7 a) Describe the Pseudo noise sequences and Discuss the properties of the Maximum length sequence

b) Briefly describe the generation and detection of the QPSK modulation

c) For the binary sequence 110010, Sketch the transmitted signal for the DPSK modulation.

CO4

PO3

10

CO2

PO1

08

CO2

PO1

07

CO2

PO1

05
