

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET5PCEM1

Max Marks: 100

Course: Electromagnetics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Four identical charges of 3 nC are located at $P_1(1, 1, 0)$, $P_2(-1, 1, 0)$, $P_3(-1, -1, 0)$, $P_4(1, -1, 0)$. Find \mathbf{E} at $P(1, 1, 1)$.			CO2	PO1	07
		b)	Derive an expression for Electric field at a point due to an infinite line charge, starting from Coulomb's Law.			CO2	PO1	07
		c)	A uniform volume charge density of $0.2\mu\text{C}/\text{m}^3$ is present throughout the spherical shell extending from $r = 3\text{cm}$ to $r = 5\text{cm}$. If $\rho_v = 0$ elsewhere, find the total charge present within the shell.			CO2	PO1	06
			OR					
	2	a)	State and prove divergence theorem.			CO2	PO1	07
		b)	Derive an expression for Electric field at a point due to an infinite sheet charge, starting from the expression for \mathbf{E} due to an infinite line.			CO2	PO1	07
		c)	If $\mathbf{D} = 2r\mathbf{a}_r \text{C}/\text{m}^2$, find the total electric flux leaving the surface of the cube $0 \leq x, y, z \leq 4$.			CO2	PO1	06
			UNIT - II					
	3	a)	Derive an expression for energy density in an electrostatic field.			CO2	PO1	07
		b)	Derive an expression for continuity of current.			CO2	PO1	07
		c)	Find the amount of energy required to move a 6 C charge from the origin to $P(3, 1, -1)$ in the field $\mathbf{E} = 2x\mathbf{a}_x - 3y^2\mathbf{a}_y + 4\mathbf{a}_z \text{V}/\text{m}$ along the straight-line path $x = -3z$, $y = x + 2z$.			CO2	PO1	06
			UNIT - III					
	4	a)	For the figure shown in Fig 4a, find \mathbf{D}_2 and the energy density in each region.			CO2	PO1	07

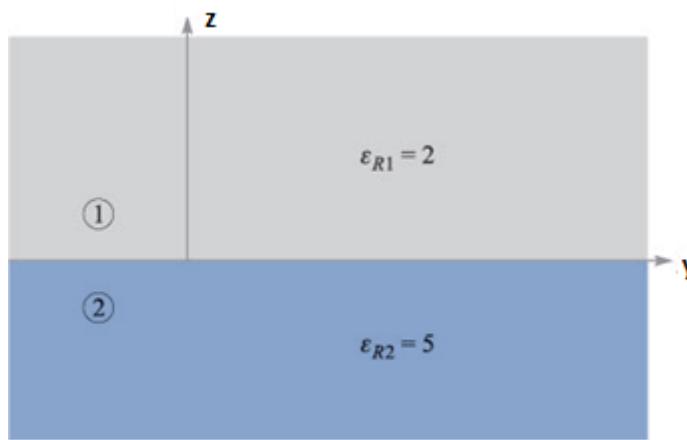


Fig 4a

b) Derive an expression for coaxial capacitor with inner and outer radii 'a' and 'b' respectively. The potential at $\rho = a$ is V_0 and at $\rho = b$ is 0.

c) Let $V = 2xy^2x^3$ and $\epsilon = \epsilon_0$. Given point P(1, 2, -1) i) Find V at P ii) \mathbf{E} at P iii) Does V satisfy Laplace's equation?

UNIT - IV

5 a) A current filament of $3\mathbf{a}_x$ A lies along the x axis. Find \mathbf{H} in cartesian components at P(-1, 3, 2).

b) An infinite filament on the z-axis carries 20π mA in the \mathbf{a}_z direction. Three uniform cylindrical current sheets are also present: 400 mA/m at $\rho = 1$ cm, -250 mA/m at $\rho = 2$ cm, and -300 mA/m at $\rho = 3$ cm. Calculate H_ϕ at $\rho = 0.5, 1.5, 2.5$ and 3.5 cm

c) Derive expression for tangential and normal components of magnetic field for a boundary separating magnetic materials μ_1 and μ_2 .

UNIT - V

6 a) Explain the significance of Maxwell's Equation in point form and integral form

b) The location of the sliding bar shown in Fig 6b is given by $x = 5t + 2t^3$ and the separation of the two rails is 20 cm. Let $B = 0.8x^2 \mathbf{a}_z$ T. Find the emf at i) $t = 0.4$ s and ii) $x = 0.6$ m

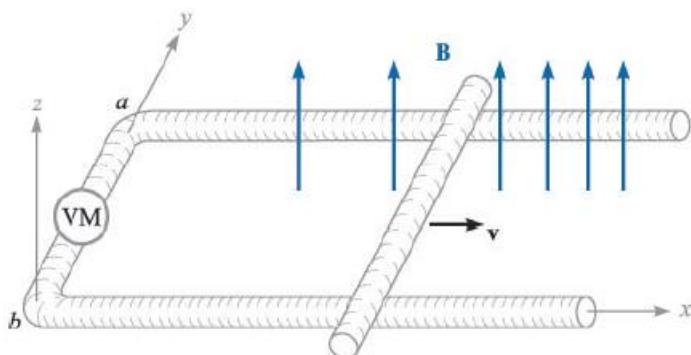


Fig 6b

	c)	Derive an expression for Poynting Vector	CO3	PO2	06
		OR			
7	a)	Consider $\mathbf{E}(z, t) = 1800 \cos(10^7 \pi t - \beta z) \mathbf{a}_x$ V/m and $\mathbf{H}(z, t) = 3.8 \cos(10^7 \pi t - \beta z) \mathbf{a}_y$ A/m. Find λ , μ_R and ϵ_R .	CO3	PO2	07
	b)	\mathbf{E}_s in free space is given by the equation $10e^{-\beta x} \mathbf{a}_z + 15e^{-\beta x} \mathbf{a}_y$ V/m. Find i) \mathbf{H}_s and ii) average power density in W/m ² .	CO3	PO2	07
	c)	Consider microwave equipment operating at 2.45 GHz. If the conductivity $\sigma = 1.2 \times 10^6$ S/m and $\mu_R = 500$ for the stainless-steel interior, find the depth of penetration.	CO3	PO2	06

REAPPEAR EXAMS 2023-24