

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET5PCEMC/22ET5PCEM1

Max Marks: 100

Course: ELECTROMAGNETICS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Obtain expression of Electric Field Intensity due to various types of charge distribution.	CO2	PO1	08
	b)	The flux density $\vec{D} = \frac{r}{3} \hat{a}_r$ nC/m ² is in the free space. i)Find \vec{E} at r=0.2m. ii)Find the total electric flux leaving the sphere of r=0.2m iii)Find the total charge within the sphere of r=0.3m	CO2	PO1	04
	c)	The charge is distributed along the z-axis from z = -∞ to +∞ and y-axis from y = -∞ to +∞ with a charge density of 20nC/m. Find \vec{E} at (2,0,0)m. Also, express the answer in cylindrical co-ordinates.	CO2	PO1	08
OR					
2	a)	Obtain the expression for divergence by Applying Gauss's law to a differential volume element.	CO2	PO1	08
	b)	Let $\vec{D} = 5r^2 \hat{a}_r$ mC/m ² for r<0.08m and $\vec{D} = \frac{0.1}{r^2} \hat{a}_r$ mC/m ² for r>0.08m. Find charge density for (i) r=0.06m and (ii) for r=0.1m	CO2	PO1	04
	c)	If a sphere of radius 'a' has a charge density $\rho_v = kr^3$ then find \vec{D} and $\nabla \cdot \vec{D}$ as a function of radius r and sketch the result. Assume k constant.	CO3	PO2	08
UNIT - II					
3	a)	Define electric field intensity and electric potential. Deduce the relationship between E and V.	CO2	PO1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>An electrostatic field is given by $\vec{E} = -8xy\hat{a}_x - 4x^2\hat{a}_y + \hat{a}_z$ V/m. The charge of 6C is to be moved from B(1,8,5) to A(2,18,6). Find the work done in each of the following cases,</p> <p>i) The path selected is $y=3x^2+z, z=x+4$</p> <p>ii) The straight line from B to a.</p> <p>Show that the work done remains same and is independent of the path selected.</p>	CO2	PO1	08
	c)	<p>Given the potential field $V=50x^2yz+20y^2$ volts in free space. Find (i) V at P(1,2,3) (ii) \vec{E}_P and (iii) \hat{a}_r at P .</p>	CO2	PO1	06
		OR			
4	a)	<p>Define work done and obtain the line integral to calculate the work done in moving a point charge Q in an electric field \vec{E}.</p>	CO2	PO1	06
	b)	<p>If three charges $3\mu\text{C}$, $4\mu\text{C}$ and $5\mu\text{C}$ are located at $(0,0,0)$, $(2,-1,3)$ and $(0,4,-2)$ respectively. Find the potential at $(1,0,1)$ assuming zero potential at infinity.</p>	CO2	PO1	08
	c)	<p>Find the total current in outward direction from a cube of 1m, with one corner at the origin and edges parallel to the coordinate axes if, $\vec{J} = 2x^2\hat{a}_x + 2xy^3\hat{a}_y + 2xy\hat{a}_z$ A/m².</p>	CO2	PO1	06
		UNIT - III			
5	a)	<p>Explain and derive the boundary conditions for a di-electric and di-electric interface.</p>	CO2	PO1	08
	b)	<p>Solve the Laplace's equation for the potential field in the homogeneous region between the two concentric conducting spheres with radii a and b, such that b>a if potential $V=0$ at $r=b$ and $V=V_0$ at $r=a$. And find the capacitance between the two concentric spheres.</p>	CO2	PO1	08
	c)	<p>A potential field is given as $V=100e^{-5x} \sin 3y \cos 4z$ V. Let the point P(0.8, 0.6, 0) be located at a conductor free space boundary is at $z = 0$. At point P, find the magnitudes of, (i)V, (ii) \vec{E}, (iii)E_t, (iv)E_N.</p>	CO2	PO1	04
		OR			
6	a)	<p>Explain and derive the boundary conditions for a conductor and free-space interface.</p>	CO2	PO1	08
	b)	<p>Conducting spherical shells with radii $a=10\text{cm}$ and $b=30\text{cm}$ are maintained at a potential difference of 100V such that $V(r=b)=0$ and $V(r=a)=100\text{V}$. Determine V and E in the region between the shells. If $\epsilon_r=2.5$ in the region determine the total charge induced on the shells and the capacitance there on.</p>	CO2	PO1	08

	c)	Determine whether or not the following potential fields satisfy the Laplace's equation: (i) $V=x^2-y^2+z^2$ (ii) $V=rcos\theta+\phi$	CO2	PO1	04
		UNIT - IV			
7	a)	Derive an expression for $\text{curl } \mathbf{H}$ using Ampere's circuital law.	CO2	PO1	08
	b)	Obtain the expression for \vec{H} in all the regions if a cylindrical conductor carries a direct current I and its radius is 'R'm. Plot the variation of \vec{H} against the distance r from the centre of the conductor.	CO2	PO1	06
	c)	Find the magnetic flux density at the centre 'O' of a square of sides equal to 5m and carrying 10 amperes of current.	CO2	PO1	06
		OR			
8	a)	In cylindrical co-ordinates $\vec{A} = 50r^2\hat{a}_z$ Wb/m is a vector magnetic potential, in a certain region of free space. Find \vec{H} , \vec{B} , \vec{J} and using \vec{J} find total current I crossing the surface $0 \leq r \leq 1, 0 \leq \phi \leq 2\pi$ and $z=0$.	CO2	PO1	08
	b)	The magnetic field intensity is given in a region of space as, $\vec{H} = \frac{x+2y}{z^2}\hat{a}_y + \frac{2}{z}\hat{a}_z$ A/m. Find (i) $\nabla \times \vec{H}$, (ii) \vec{J} , (iii) Use \vec{J} to find the total current passing through the surface $z=4, 1 < x < 2, 3 < y < 5$ in the \hat{a}_z direction.	CO2	PO1	06
	c)	Evaluate both sides of Stoke's theorem for the field $\vec{H} = 10\sin\theta\hat{a}_\phi$ and the surface $r=3, 0 \leq \theta \leq 90^\circ$. Let the surface have the \hat{a}_r direction.	CO2	PO1	06
		UNIT - V			
9	a)	Show that $\nabla \cdot \vec{J} = -\frac{\partial \rho_v}{\partial t}$ where \vec{J} is conduction current density in A/m ² and ρ is volume charge density in C/m ³	CO2	PO1	06
	b)	A two dimensional electric field is given by $\vec{E} = x^2\hat{a}_x + x\hat{a}_y$ V/m. Show that the electric field cannot arise from a static distribution of charge.	CO2	PO1	04
	c)	Given the retarded potentials, $V = -y(x+at)$ and $\vec{A} = y\left(\frac{x}{a} + t\right)\hat{a}_x$ Wb/m where $a = \frac{1}{\sqrt{\mu_0\epsilon_0}}$ (i) Show that $\nabla \cdot \vec{A} = -\mu\epsilon \frac{\partial V}{\partial t}$, (ii) Find \vec{H} , \vec{B} , \vec{E} , \vec{D} .	CO2	PO1	10
		OR			
10	a)	State Poynting theorem and explain its significance. Derive point	CO2	PO1	06

		and integral form of the Poynting theorem.			
	b)	A radio station transmits power radially around the spherical region. The desired electrical field intensity at a distance of 10km from the station is 1mV/m. Calculate the corresponding magnetic field, power density and the power transmitted by station.	CO2	PO1	04
	c)	A wave propagating in a lossless dielectric has components, $\vec{E} = 500\cos(10^7 t - \beta z)\hat{a}_x$ if the wave is travelling at a velocity $\vec{H} = 1.1\cos(10^7 t - \beta z)\hat{a}_y$ 0.5 times the velocity in free space, find $\mu_r, \epsilon_r, \beta, \lambda, \eta$	CO2	PO1	10

REAPPEAR EXAMS 2024-25