

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET5PCEMC / 22ET5PCEM1

Max Marks: 100

Course: ELECTROMAGNETICS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	State and Explain Coulomb's law of force between two point charges in vector form.	<i>CO1</i>		05
	b)	Point charges of 50nC each are located at A(1,0,0), B(-1,0,0), C(0,1,0) and D(0,-1,0) in free space. Find the total force on the charge at A.	<i>CO2</i>	<i>PO1</i>	08
	c)	Derive an Expression for Electric field intensity due to an infinite line charge.	<i>CO2</i>	<i>PO1</i>	07
OR					
2	a)	State and Prove Gauss Law.	<i>CO2</i>	<i>PO1</i>	05
	b)	Derive the expression for E due to sheet charge using Gauss's law.	<i>CO2</i>	<i>PO1</i>	05
	c)	Evaluate both sides of the divergence theorem for the defined plane in which $1 \leq x \leq 2$, $2 \leq y \leq 3$, $3 \leq z \leq 4$, if $\mathbf{D} = 4x \mathbf{a}_x + 3y^2 \mathbf{a}_y + 2z^3 \mathbf{a}_z \text{ C/m}^2$.	<i>CO2</i>	<i>PO1</i>	10
UNIT - II					
3	a)	Obtain the expression for the work done in moving a point charge in an Electric field.	<i>CO2</i>	<i>PO1</i>	07
	b)	Given $V=2x^2y-5z$ at point P(-4,3,6), Find the potential, electric field intensity and volume charge density.	<i>CO2</i>	<i>PO1</i>	07
	c)	Calculate the work done in moving a charge 4C from (1,0,0) to A(0,2,0) along the path $y=2-zx$, $z=0$ in the field i) $\mathbf{E}=5 \mathbf{a}_x \text{ V/m}$ ii) $\mathbf{E}=5x \mathbf{a}_x \text{ V/m}$ iii) $\mathbf{E}=5x \mathbf{a}_x + 5y \mathbf{a}_y \text{ V/m}$	<i>CO2</i>	<i>PO1</i>	06
OR					
4	a)	Derive the expression for equation of continuity of current.	<i>CO3</i>	<i>PO2</i>	08
	b)	Electrical potential at an arbitrary point in free space is given as $V=2(x+1)^2(y+2)^2(z+3)^2$ volt at a point P(2,-1,4).Find i) V ii) \mathbf{E} iii) $ \mathbf{E} $ iv) $ \mathbf{D} $ v) ρ_v	<i>CO2</i>	<i>PO1</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Define potential difference. Derive the expression for potential field of a point charge.	CO2, CO3	PO1, PO2	06
		UNIT – III			
5	a)	Solve the Laplace's equation for the potential field in the homogeneous region between the two concentric conducting sphere with radii 'a' and 'b' such that $b > a$. If potential $V = 0$ at $r = b$ and $V = V_0$ at $r = a$. Also find the capacitance between concentric spheres.	CO3	PO2	10
	b)	Determine whether the following potentials satisfy Laplace's equation. i) $V = 2x^2 - 3y^2 + Z^2$ ii) $V = r \cos\theta + \phi$	CO3	PO2	06
	c)	Write Laplace's equation in different coordinate systems.	CO1		04
		OR			
6	a)	Derive an expression for capacitance of two uniformly charged parallel planes of infinite extent.	CO3	PO2	08
	b)	Obtain Poisson's equation from point form of Gauss Law.	CO2	PO1	06
	c)	Calculate numerical values for V and ρ_v at point P in free space where $V = 5\rho^2 \cos 2\phi$ at $P(\rho = 3, \phi = \frac{\pi}{3}, z = 2)$.	CO2	PO1	06
		UNIT – IV			
7	a)	State and Explain Biot Savart's Law.	CO1		06
	b)	State and prove Ampere's circuital law.	CO2	PO1	04
	c)	Obtain the boundary conditions at the interface between two magnetic materials.	CO3	PO2	10
		OR			
8	a)	Derive an expression for force between differential current elements.	CO2	PO1	08
	b)	A point charge of $Q = 18C$ has a velocity of 5×10^6 m/s in the direction $\mathbf{a}_v = 0.6\mathbf{a}_x + 0.75\mathbf{a}_y + 0.3\mathbf{a}_z$ m/s. Find the magnitude of the force exerted on the charge by the field a) $\mathbf{E} = -3\mathbf{a}_x + 4\mathbf{a}_y + 6\mathbf{a}_z$ kV/m b) $\mathbf{B} = -3\mathbf{a}_x + 4\mathbf{a}_y + 6\mathbf{a}_z$ mT	CO2	PO1	06
	c)	Explain the concept of scalar potential.	CO1		06
		UNIT – V			
9	a)	List and Explain Maxwell's equation in point form and integral form for time varying fields.	CO1		08

	b)	For the given medium $\epsilon=10^{-11}$ F/m and $\mu=10^{-5}$ H/m, if $B = 2 \times 10^{-4} \cos 10^5 t \sin 10^{-3} y \mathbf{a}_x$ tesla: i) Find \mathbf{E} ii) Find the total magnetic flux passing through the surface $x = 0, 0 < y < 40$ m, $0 < z < 2$ m at $t = 1$ μ sec	CO2	PO1	08
	c)	A conductor of length 4 m long lies along the 'y' axis with a current of 10 Amp in the \mathbf{a}_y direction. Find the force on the conductor if the field in the region is $B=0.005\mathbf{a}_x$ tesla.	CO2	PO1	04
OR					
10	a)	State and Prove Poynting theorem.	CO1		08
	b)	For the given medium $\epsilon=4 \times 10^{-9}$ F/m and $\sigma=0$, find K so that $\mathbf{E}=(20y-kt)\mathbf{a}_x$ V/m and $\mathbf{H}=(y+2x10^6t)\mathbf{a}_z$ A/m.	CO2	PO1	06
	c)	A uniform plane wave of frequency 10 MHz travels in positive direction in a lossy medium with $\mu_r=4$ and $\epsilon_r=2.5$ and conductivity 10^{-3} S/m. Find a) attenuation constant b) phase constant c) wave length d) propagation constant and intrinsic impedance.	CO2	PO1	06

B.M.S.C.E. - ODD SEMESTER