

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET5PCFLI

Max Marks: 100

Course: FUNDAMENTALS OF VLSI

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define and analyze with a neat graph the Moore's First law.	CO1	-	06
		b)	Design and implement the expression 3 input NAND gate using minimum number of transistors. Use CMOS technology for implementation and thereby sketch: i. Monochrome layout diagram ii. Stick diagram	CO3	PO3	14
OR						
	2	a)	Compare CMOS and Bipolar technologies.	CO1	-	06
		b)	Explain the process of pMOS fabrication with relevant diagrams and masking steps.	CO1	-	08
		c)	Explain λ based design rules for fabrication.	CO1	-	06
			UNIT - II			
	3	a)	Design and analyze the operation of a Cascode Voltage Switch Logic 2 input AND / NAND gate.	CO3	PO3	10
		b)	Design a 2 input NOR gate using Tri-state CMOS logic and analyze its working principle. Also sketch the stick diagram for the circuit.	CO3	PO3	10
OR						
	4	a)	Design a RS latch dynamic CMOS circuit and analyze its working principle and thereby sketch its stick diagram.	CO3	PO3	10
		b)	Design a 3 input NOR gate using Pseudo nMOS logic and analyze its working principle. Also sketch the stick diagram for the circuit.	CO3	PO3	10

UNIT - III					
5	a)	Derive the expressions for rise – time estimation and fall – time estimation of a CMOS inverter with relevant terminologies.	CO3	PO2	12
	b)	Explain the basic architectural guidelines considered in VLSI design.	CO1	-	08
OR					
6	a)	Analyze and implement a 1 bit magnitude comparator circuit using 4:1 multiplexer as leaf cells.	CO2	PO1	08
	b)	Prove that the total time constant is 0.7 ns for a CMOS inverter and 0.5 ns for an nMOS inverter. Use appropriate terminologies and equivalent circuits for your analysis.	CO3	PO2	12
UNIT - IV					
7	a)	Design and analyze the following: <ol style="list-style-type: none"> 4-bit combinational shifter 4X4 Barrel shifter 	CO2	PO1	10
	b)	Design and analyze with relevant diagrams a Carry select adder and also write the stick diagram for a 1-bit Manchester chain.	CO2	PO1	10
OR					
8	a)	Design and analyze the following: <ol style="list-style-type: none"> 4 bit SISO dynamic register 4X 4 cross bar switch 	CO2	PO1	10
	b)	Design and analyze with relevant diagrams a Serial-Parallel multiplier. Consider an example for your analysis.	CO2	PO1	10
UNIT - V					
9	a)	Analyze the practical design issues of testability with respect to the following: <ol style="list-style-type: none"> Controllability and Observability Gated Clocks 	CO1	-	08
	b)	Consider the circuit diagram shown in figure below. If L1 is SA1, analyze and interpret its test vectors considering the three testing stages of DFT principle.	CO3	PO3	12

OR							
	10	a)	Implement and analyze the following memory cells. Sketch the equivalent stick diagrams. i. 3T Dynamic RAM cell ii. Pseudo static memory cell	<i>COI</i>	-	12	
		b)	Analyze the practical design issues of testability with respect to the following: (i) Bus Structure (ii) BILBO testing	<i>COI</i>	-	08	

REAPPEAR EXAMS 2024-25