

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

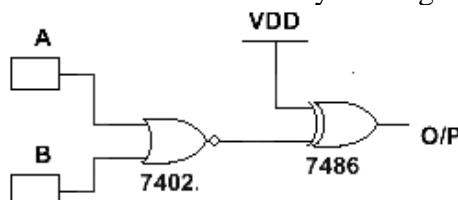
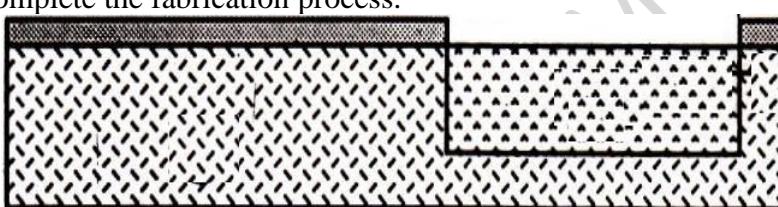
Programme: B.E.

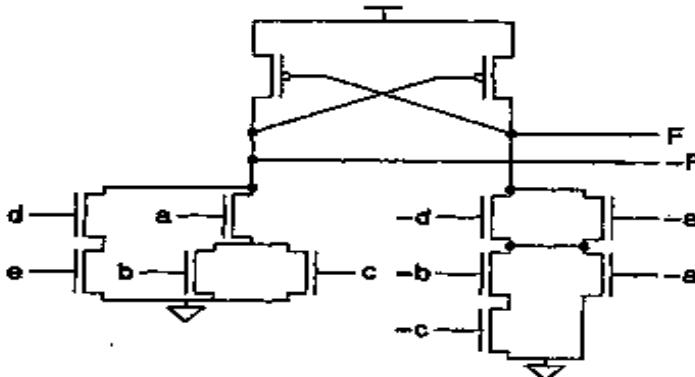
Semester: V

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

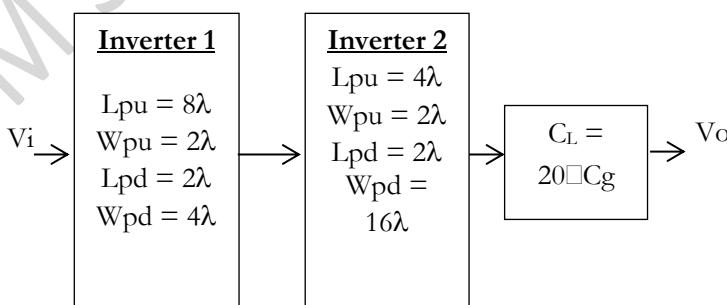
Course Code: 23ET5PCFLI



Max Marks: 100


Course: FUNDAMENTALS OF VLSI

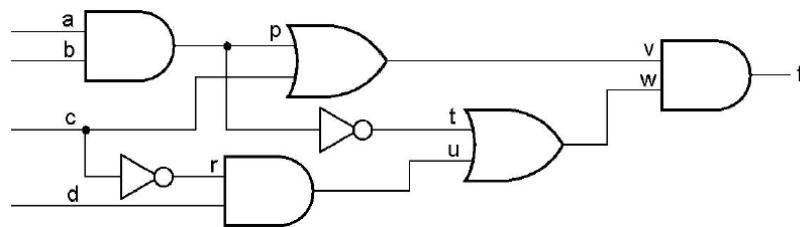
Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Considering the initial process of fabrication given below, complete the fabrication process.	CO2	PO1	10
	b)	Design and implement a CMOS circuit for the expression $Y = A + BC$ using minimum number of transistors. Also implement its Stick diagram.	CO3	PO3	10
OR					
2	a)	Design and implement the circuit shown below using minimum number of transistors. Use CMOS technology for implementation and thereby sketch the Monochrome layout diagram.	CO3	PO3	10
	b)	Analyze with relevant diagrams and masking operations, the CMOS twin tub fabrication process.	CO1	-	10
UNIT - II					
3	a)	Design a 3 input OR gate using C ² MOS logic and analyze its working principle. Also sketch the stick diagram for the circuit.	CO3	PO3	14
	b)	Interpret the output of the following circuit shown below and write the output expression and its stick diagram.	CO3	PO2	06


Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

4	a)	Design, analyze and implement a Dynamic CMOS circuit for a 3 input NOR gate with minimum number of transistors. Also sketch the stick diagram for the same.	CO3	PO3	14
	b)	Design a 4:1 Mux using Transmission gate and write its functional table. Also sketch the stick diagram for a 2:1 Mux circuit.	CO3	PO3	06
UNIT - III					
5	a)	Derive the expressions for rise – time estimation and fall – time estimation of a CMOS inverter with relevant terminologies.	CO2	PO1	05
	b)	Analyze the basic architectural guidelines considered in VLSI design.	CO1	-	05
	c)	<p>Two nMOS inverters are cascaded as shown in Fig below. Calculate the delay in terms of τ. If $C_L = 8\lambda C_g$ at the output of first inverter, determine:</p> <p>(i) The delay if $\tau = 0.6$ ns?</p> <p>(ii) If due to connecting wires, the stray capacitance increases by $8\lambda C_g$, what is the delay time?</p> <p>(iii) Implement the stick diagram of the nMOS inverter.</p>	CO3	PO2	10
BMSC2024-25					


OR

6	a)	Starting from the nMOS inverter characteristics, derive the expression for Z_{pu}/Z_{pd} of an nMOS inverter driven by another nMOS inverter. Also analyze different nMOS inverter implementations.	CO2	PO1	10
---	----	---	-----	-----	-----------

	b)	<p>Determine the total capacitance between the following area and substrate in the figure given below. Consider $5\mu\text{m}$ technology for your calculations.</p>	CO3	PO2	10
		UNIT - IV			
7	a)	<p>Design a 4 – bit Combinational shifter and briefly analyze its functioning with an appropriate truth table. Also write the stick diagram for 1 – bit inverting register.</p>	CO3	PO2	05
	b)	<p>Implement and analyze a 4 – bit serial – parallel multiplier circuit.</p>	CO1	-	05
	c)	<p>Derive an expression for the computation time 'T' for the Carry Select Adder and thereby derive the minimum T for a 128 bit carry select adder, with 16ns delay through every adder cell and 2ns delay through the multiplexer. Determine number of blocks and number of adder cells in each block for achieving minimum T.</p>	CO2	PO1	10
		OR			
8	a)	<p>Design and analyze the operation of a 4 – bit Barrel shifter.</p>	CO1	-	05
	b)	<p>Implement and analyze the working of a 24 – bit Carry skip adder. Also derive the optimization technique used for the carry skip adder.</p>	CO1	-	05
	c)	<p>Consider the example of $(127)_{10} \times (126)_{10}$ and thereby implement the multiplication using:</p> <ol style="list-style-type: none"> Traditional Booth multiplier Modified Booth multiplier <p>Complete the process of multiplication using appropriate encoding tables for both the cases.</p>	CO3	PO2	10
		UNIT - V			
9	a)	<p>Identify the memory logic in the circuit given below and thereby analyze its working principle.</p>	CO2	PO1	06

	b)	<p>The logic network shown below has inputs a, b, c, d and output f. Find all test vectors which can be used to find a SA1 for signal u.</p>	CO3	PO3	14
		OR			
10	a)	<p>Analyze the practical design issues of testability with respect to the following:</p> <ol style="list-style-type: none"> Controllability and Observability Gated Clocks 	CO1	-	06

b) The logic network shown below has inputs a, b, c, d and output f. Find all test vectors which can be used to find a **SA1** for signal **t**.
