

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 19ET5PCITC

Max Marks: 100

Course: Information Theory & Coding

Date: 23.02.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) State and prove Theorem of total probability	04
	b) One bag contains 4 white balls and three black balls and the second bag contains 3 white balls and 5 black balls. One ball is drawn at random from the first bag and placed unseen in the second bag. What is the	06
	i. Probability that the a ball drawn from first bag is black	
	ii. Probability that the a ball drawn from second bag is white	
2	c) For the first order Markov source with a source alphabet $S=\{A,B,C\}$ shown in the figure 1.c	10
	i. Compute the probabilities of the states	
	ii. Find $H(S)$ and $H(S^2)$	

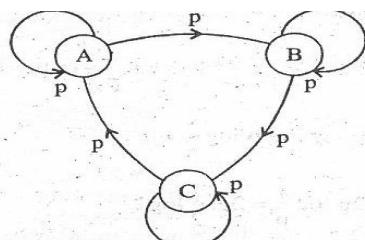


Fig 1.c

UNIT - II

2	a) For the following codes check Instantaneous property. Justify your answer with proper proof .If instantaneous calculate the minimum average length.	08
---	--	-----------

Source symbols	Code A	Code B	Code C
S1	00	0	0
S2	01	10	01
S3	10	110	011
S4	11	1110	0111

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Construct a Ternary and quaternary Huffman code by placing the composite symbol as high as possible. Compute the coding efficiency and redundancy in each case. 12

Symbol	S1	S2	S3	S4	S5	S6	S7	S8
P	0.22	0.2	0.18	0.15	0.1	0.08	0.05	0.02

UNIT - III

3 a) With an example, Explain Noise matrix having 3 rows and 4 columns 05

b) Show that $I(A,B)$ is always non-negative. 05

c) A transmitter has an alphabet consisting of 5 letters $\{a_1, a_2, a_3, a_4, a_5\}$ and the receiver has an alphabet of four letters $\{b_1, b_2, b_3, b_4\}$. The joint probabilities of the system are given below. Compute different entropies of this channel. 10

$$P(A / B) = \begin{bmatrix} 0.25 & 0 & 0 & 0 \\ 0.10 & 0.30 & 0 & 0 \\ 0 & 0.05 & 0.10 & 0 \\ 0 & 0 & 0.05 & 0.1 \\ 0 & 0 & 0.05 & 0 \end{bmatrix}$$

OR

4 a) Define Binary erasure channel and show that the channel capacity of BEC is $\frac{1}{P}$. 08

b) A CRT terminal is used to enter alphanumeric data into a computer. The CRT is connected through a voice grade telephone line having usable band width of 3Khz and an output (S/N) of 10dB. Assume that the terminal has 128 characters and data is sent in an independent manner with equal probability.

- i. Find the average information per character
- ii. Find the capacity of the channel
- iii. Find maximum rate at which data can be sent from terminal to computer without error.

c) Describe Shannon Hartley Law implications 06

UNIT - IV

5 a) Describe i. Types of errors ii. Types of codes 06

b) For a systematic (6,3) linear block code, the parity matrix P is given by 14

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- i. Find all the possible code vectors.
- ii. Construct the standard array look-up table
- iii. Detect the errors and correct the errors in the received vectors
 $R_a = 100110$; $R_b = 001100$
- iv. Construct the corresponding syndrome calculation circuit for the received vector $R = \{r_1, r_2, r_3, r_4, r_5, r_6\}$
- v. Construct error correcting circuit.

OR

6 a) Define and list the properties of Cyclic code. **06**

b) For the (7,4) single error correcting cyclic code $D(x) = d_0 + d_1x + d_2x^2 + d_3x^3$ Using the generator polynomial $g(x) = 1 + x + x^3$. Find the code vectors for the message data in both non – systematic and systematic form.

- $D = (d_0 \ d_1 \ d_2 \ d_3) = (1 \ 1 \ 1 \ 0)$
- $D = (1 \ 0 \ 0 \ 1)$

c) Consider a single error correcting code for a message block of size 11. **04**

- How many check bits are required?
- Find a parity check matrix for this code.

UNIT - V

7 a) Briefly explain the construction RS codes. **06**

b) Consider the (2,1,1) convolutional code with $g^{(1)} = (11)$, $g^{(2)} = (10)$ **14**

- Draw the encoder block diagram
- Draw the state diagram
- Draw the code tree
- Find the code-word corresponding to the information sequence (10111)
- Verify the output using time domain approach.
