

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Telecommunication Engineering

Course Code: 19ET5PCTLA

Course: TRANSMISSION LINES AND ANTENNAS

Semester: V

Duration: 3 hrs.

Max Marks: 100

Date: 13.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may suitably be assumed.

UNIT - I

1 a) Draw the following transmission lines: 08
 1. Two wire line
 2. Rectangular waveguide
 3. Co-axial cable
 4. How are these different from conventional lines? Highlight the wavelength, physical length correlation in both of them.

b) Voltage and current at any point on a transmission line are 08
 $V(z) = E_R \operatorname{Cosh} \gamma z + I_R Z_o \operatorname{Sinh} \gamma z$
 $I(z) = I_R \operatorname{Cosh} \gamma z + E_R / Z_o \operatorname{Sinh} \gamma z$
 Why is it not just constant $V=IR$ and $I=V/R$? What are α , β and γ ?
 c) Derive expression for Z_o . 04

OR

2 a) A generator of 1 volt, 1000Hz supplies power to a 100km transmission line having the following parameters: 10
 $R = 10.4 \Omega/\text{km}$
 $L = 0.00367 \text{H/km}$
 $G = 0.8 \times 10^{-6} \text{ mho/km}$
 $C = 0.00835 \mu\text{F/km}$
 Find α , γ and Z_o of the transmission line.

b) The characteristic impedance of a certain line is $710 \angle 14^\circ \Omega$ and the propagation constant is $0.007 + j0.028/\text{km}$. The line is terminated in a 300Ω resistor. Calculate the input impedance of the line, if its length is 100km. 10

UNIT - II

3 a) What is skin effect? Give expressions for Inductance and Capacitance of co-axial line. 05

b) A 50MHz open wire line is to be built of copper wire of diameter 3.264mm and to have $R_o = 425 \Omega$. 10
 1. Find the desired spacing 'd'
 2. Calculate L and C of 5m of this line, if the line is dissipationless.

c) Show voltage and current on a dissipationless line for 05
 A. OC
 B. $Z_R \neq R_o$
 C. SC

UNIT - III

4 a) Show expressions for finding the Inductance and Capacitance of Open wire line at higher frequencies? 10
 b) Explain – Wave guides and MMICs. 10

UNIT - IV

5 a) Define the following Antenna Parameters and expressions for them. 12
 A. Directivity
 B. Power Gain
 C. Relation between Directivity and Beamwidth
 b) What is the maximum power received at a distance of 0.5km over a freespace 1GHz circuit consisting of a transmitting antenna with 25dB gain and a receiving antenna of gain 20dB. The gain is with respect to isotropic source. The transmitting antenna input is 150W. 08

OR

6 a) Differentiate between Broadside and Endfire Antenna Arrays. Obtain the beamwidths for both for the given case and show their radiation pattern. 12
 1. Broadside-Power of equal magnitude and in phase $d=\lambda/2, \delta=0$
 2. Endfire -Power of equal magnitude and out of phased $d=\lambda/2, \delta=\Pi$
 b) A uniform linear array consists of 16 isotropic point sources with a spacing of $\lambda/4$. If the phase difference is -90° , Calculate 08
 A. HPBW
 B. Directivity
 C. Beam Solid Angle
 D. Effective Aperture
 $\delta=-90^\circ$. The system is extended end fire.

UNIT - V

7 a) A half wave dipole radiating in free space is driven by a current of 0.5 Amp at the terminals. Calculate E and H field one km from the antenna at angles of 45° and 90° . 10
 b) A small circular loop and diameter $\lambda/10$ is spaced $\lambda/20$ from the ground plane.
 A. What is the directivity or gain of the loop alone assuming no losses.
 B. What is the directivity or gain with a ground plane assuming no losses. 10
