

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Engineering & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 19ET5PCTLA

Max Marks: 100

Course: Transmission Lines and Antennas

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Show that a line of finite length, terminated in load equivalent to its characteristic Impedance, appears as an infinite line to the sending end generator.	CO2	PO1	10
		b)	The propagation constant of a distortion less line was found to be $0.01 + j0.02$. If $L=4\text{mH/km}$ and $C = 6.25\text{nF/Km}$, determine the other line constants, phase velocity, characteristic impedance and show that it is a pure resistance.	CO2	PO1	10
OR						
	2	a)	Define insertion loss. Derive the expression for insertion loss of a uniform transmission line.	CO2	PO1	10
		b)	A transmission line of length 15km operated at a frequency of 1kHz has the characteristic impedance of $550\angle -50^\circ$ and the propagation constant of $0.05\angle 25^\circ$. Obtain the equivalent π section of the line.	CO2	PO1	10
			UNIT - II			
	3	a)	Derive the expression for the input impedance of a quarter -wave transmission line. Match a load with impedance of 200Ω to be 50Ω using a quarter-wavelength transformer.	CO2	PO1	7
		b)	Explain single stub matching. A dissipation less transmission line is feeding a load impedance in such a way as to produce reflections with reflection coefficient of $0.5\angle 30^\circ$. Calculate the location and length of a short circuited stub so as to match the line to the load, if the line is operated at 1GHz.	CO2	PO1	8

	c)	<p>The plot of the reactance curve as a function of the length of the line is as shown. Analyze the plot to show that the transmission line can be used as reactive circuit elements.</p>	CO3	PO2	5
		OR			
4	a)	<p>Discuss how standing waves are formed on an open circuited dissipation less RF line. Determine the load impedance and the standing wave ratio, given that the dissipation- less line has a characteristic impedance of 500Ω and that the reflection coefficient $K=0.4 \angle -50^\circ$.</p>	CO2	PO1	7
	b)	<p>Derive the expression for a single stub impedance matching on a transmission line.</p>	CO2	PO1	8
	c)	<p>Analyze the given figure to find the voltage standing wave ratio and the reflection coefficient on the line. Find the impedance at point A. What does point B represent? Identify the short circuit point.</p>	CO3	PO2	5
		UNIT III			
5	a	<p>A Coaxial cable of copper is having a conductivity of 5.75×10^7 mho/m. The diameter of the inner conductor 4mm and the outer diameter of the outer conductor is 13mm. The space between the two conductors is filled with a dielectric material of $\epsilon_r = 8.6$. The line is said to have a capacitance of 500pf/m and an a.c resistance of $5\Omega/\text{km}$, at a certain frequency. Determine i) the inductance ii)</p>	CO2	PO1	10

		inner radius of the outer conductor, iii) d.c resistance and iv) frequency of operation.			
	b	The ratio of spacing 'd' to the radius 'a' of an open wire dissipation less line is 20 and the space between the conductors has a dielectric of relative permittivity of 6.3. Determine i) inductance ii) Capacitance iii) Characteristic impedance iv) phase velocity when the line is excited by a source.	CO2	PO1	6
	c	Explain the skin effect. What are the measures to reduce it?	CO1		4
		OR			
6	a	An open-wire line of 60MHz is to be built of copper wire of radius 1.632mm and have $R_o=425\text{ ohms}$ a)find the desired spacing between the two wires b) L c) C d) Z_0 and e)phase velocity if the line is dissipation less.	CO2	PO1	10
	b	What are the parameters that determine the performance of the transmission line? If the signal level and the noise level on a telephone line of 4000 Hz bandwidth are 20 v and 6 mv respectively, find the channel capacity of the line.	CO2	PO1	6
	c	Compare fiber optic cable over copper as a transmission medium.	CO1		4
		UNIT - IV			
7	a)	Derive the expression to show the relation between the directivity and effective aperture. Hence obtain the effective aperture of an isotropic antenna.	CO2	PO1	6
	b)	Find the power radiated by a 10cm dipole antenna operated at 50MHz with an average current of 5mA.How much average current would be needed to radiate power of 1 W.	CO2	PO1	6
	c)	Four isotropic point sources separated by $\lambda/2$ are placed along a linear array. The power applied is of equal amplitude and phase difference $-d_r$. Obtain the field pattern.	CO2	PO1	8
		OR			
8	a)	Compare the two field zones of an antenna. Let a directional antenna have a maximum electrical dimension of 50m and is operating at 100MHz. A field is measured at 1km from the antenna. Is it near or the far field?	CO2	PO1	6
	b)	Consider an isotropic antenna radiating in the free space. The total electric field measured at a distance of 150m from the antenna is 5.535V/m. Find the power radiated and the power density.	CO2	PO1	6

	c)	Derive Frii's transmission formula. Obtain the maximum power received at a distance of 0.5 km over a free space 1GHz circuit consisting of a transmitting antenna with 25dB gain and receiving antenna of gain 20 dB. The gain is with respect to isotropic Source. The transmitted antenna output is 50watts.	CO1	PO1	8
		UNIT - V			
9	a)	Derive the expression for the electric and magnetic fields of a short dipole.	CO2	PO1	10
	b)	Derive an expression for radiation resistance of a small loop antenna. The radius of a circular loop antenna is 0.02λ . How many turns of antenna will give a radiation resistance of 35Ω .	CO2	PO1	10
		OR			
10	a)	Derive an expression for radiation resistance of a short electric dipole	CO2	PO1	10
	b)	A dipole antenna of length 5cm is operated at a frequency of 100MHz with terminal current $I_o = 120\text{mA}$. At time $t = 1\text{ sec}$, angle $\theta = 45^\circ$ and distance $r = 3\text{m}$, find $H\phi$, E_r , and $E\theta$.	CO2	PO1	10

B.M.S.C.E. - ODD SEMESTER